MENU

Chapter 7 कणों के निकाय तथा घूर्णी गति (System of particles and Rotational Motion) Solutions

Question - 21 : -
एक बेलन 30° कोण बनाते आनत तल पर लुढ़कता हुआ ऊपर चढ़ता है। आनत तल की तली में बेलन के द्रव्यमान केन्द्र की चाल 5 m/s है।
(a) आनत तल पर बेलन कितना ऊपर जाएगा?
(b) वापस तली तक लौट आने में इसे कितना समय लगेगा?

Answer - 21 : -

Question - 22 : -
जैसा चित्र-7.14 में दिखाया गया है, एक खड़ी होने वाली सीढी के दो पक्षों BA और CA की लम्बाई 1.6m है और इनको A पर कब्जा लगाकर जोड़ा गया है। इन्हें ठीक बीच में 0.5m लम्बी रस्सी DE द्वारा बाँधा गया है। सीढ़ी BA के अनुदिश B से 1.2 m की दूरी पर स्थित बिन्दु F से 40 kg का एक भार लटकाया गया है। यह मानते हुए कि फर्श घर्षणरहित है और सीढी का भार उपेक्षणीय है, रस्सी में तनाव और सीदी पर फर्श द्वारा लगाया गया बल ज्ञात कीजिए।(g =9.8 m/s2 लीजिए)
[संकेत : सीढ़ी के दोनों ओर के सन्तुलन पर अलग-अलग विचार कीजिए]

Answer - 22 : - : माना सीढ़ी के निचले सिरों पर फर्श की प्रतिक्रिया R1 तथा R2 है तथा डोरी का तनाव T है। माना सीढ़ी की दोनों भुजाएँ ऊध्र्वाधर से कोण से बनाती हैं [चित्र 7.15]।

Question - 23 : -
कोई व्यक्ति एक घूमते हुए प्लेटफॉर्म पर खड़ा है। उसने अपनी दोनों बाहें फैला रखी हैं और उनमें से प्रत्येक में 5 kg भार पकड़ रखा है। प्लेटफॉर्म की कोणीय चाल 30 rev/min है। फिर वह व्यक्ति बाहों को अपने शरीर के पास ले आता है जिससे घूर्णन अक्ष से प्रत्येक भार की दूरी 90 cm से बदलकर 20 cm हो जाती है। प्लेटफॉर्म सहित व्यक्ति के जड़त्व आघूर्ण का मान 7.6 kg-m2 ले सकते हैं।
(a) उसका नया कोणीय वेग क्या है? (घर्षण की उपेक्षा कीजिए)
(b) क्या इस प्रक्रिया में गतिज ऊर्जा संरक्षित होती है? यदि नहीं, तो इसमें परिवर्तन का स्रोत क्या है?

Answer - 23 : -


अत: इस प्रक्रिया में गतिज ऊर्जा संरक्षित नहीं रहती बल्कि बढ़ती है तथा इस परिवर्तन (वृद्धि) का स्रोत व्यक्ति की मांसपेशीय रासायनिक ऊर्जा का गतिज ऊर्जा में परिवर्तित होना है।

Question - 24 : -
10 g द्रव्यमान और 500 m/s चाल वाली बन्दूक की गोली एक दरवाजे के ठीक केन्द्र में टकराकर उसमें अंतः स्थापित हो जाती है। दरवाजा 1.0m चौड़ा है और इसका द्रव्यमान 12 kg है। इसके एक सिरे पर कब्जे लगे हैं और यह इनसे गुजरती एक ऊर्ध्वाधर अक्ष के परितः लगभग बिना घर्षण के घूम सकता है; गोली के दरवाजे में अन्तःस्थापना के ठीक बाद इसका कोणीय वेग ज्ञात कीजिए।
[संकेत : एक सिरे से गुजरती ऊध्र्वाधर अक्ष के परितः दरवाजे का जड़त्व-आघूर्ण ML2/3 है]

Answer - 24 : -


Question - 25 : - दो चक्रिकाएँ जिनके अपने-अपने अक्षों (चक्रिका के अभिलम्बवत् तथा चक्रिका के केन्द्र से गुजरने वाले) के परितः जड़त्व-आघूर्ण I1 तथा I2 हैं और जो ω1 तथा ω2 कोणीय चालों से घूर्णन कर रही हैं, को उनके घूर्णन अक्ष सम्पाती करके आमने-सामने (सम्पर्क में) लाया जाता है।
(a) 
इस दो चक्रिका निकाय की कोणीय चाल क्या है?
(b) 
यह दर्शाइए कि इस संयोजित निकाय की गतिज ऊर्जा दोनों चक्रिकाओं की आरम्भिक गतिज ऊर्जाओं के योग से कम है। ऊर्जा में हुई इस हानि की आप कैसे व्याख्या करेंगे? ω1 ≠ ω2 लीजिए।

Answer - 25 : - (a) माना सम्पर्क में आने के पश्चात् दोनों चक्रिकाएँ उभयनिष्ठ कोणीय वेग ω से घूर्णन करती हैं।
निकाय पर बाह्य बल आघूर्ण शून्य है, अतः निकाय का कोणीय संवेग संरक्षित रहेगा।

अर्थात् संयोजित निकाय की गतिज ऊर्जा चक्रिकाओं की आरम्भिक गतिज ऊर्जाओं के योग से कम है।
गतिज ऊर्जा में हानि, चक्रिकाओं की सम्पर्कित सतहों के बीच घर्षण बल के कारण हुई है।

Question - 26 : -

(a) लम्बवत् अक्षों के प्रमेय की उपपत्ति करें। [संकेत:(x, y) तल के लम्बवत् मूलबिन्दु से गुजरती अक्ष से किसी बिन्दु x – y की दूरी का वर्ग (x2 + y2) है।
(b) 
समान्तर अक्षों के प्रमेय की उपपत्ति करें। [संकेत : यदि द्रव्यमान केन्द्र को मूलबिन्दु ले लिया जाए ∑ 

i= 

Answer - 26 : - (a) लम्बवत् अक्षों की प्रमेय (Theorem of Perpendicular Axes) – इस प्रमेय के अनुसार, “किसी समपटल का उसके तल के लम्बवत् तथा द्रव्यमान केन्द्र से जाने वाली अक्ष के परितः जड़त्व-आघूर्ण (Is), समपटल के तल में स्थित तथा द्रव्यमान केन्द्र से जाने वाली दो परस्पर लम्बवत् अक्षों के परितः समपटल के जड़त्व-आघूर्णी (Ix तथा Iy) के योग के बराबर होता है।

(b) समान्तर अक्षों की प्रमेय (Theorem of Parallel Axes) – इस प्रमेय के अनुसार, “किसी पिण्ड का किसी अक्ष के परितः जड़त्व-आघूर्ण I, उस पिण्ड के द्रव्यमान केन्द्र से होकर जाने वाली समान्तर अक्ष के परितः जड़त्व-आघूर्ण Icm तथा पिण्ड के द्रव्यमान M दोनों समान्तर अक्षों के बीच की लम्बे दूरी d के वर्ग के गुणनफल के योग के बराबर होता है।
अर्थात् I = Icm + Md2

उपपत्ति माना पिण्ड के भीतर स्थित m द्रव्यमान के किसी कण की दी गई अक्ष AB से दूरी r है तथा द्रव्यमान केन्द्र C से गुजरने वाली AB के समान्तर अक्ष EF से कण की दूरी a है। माना दोनों अक्षों AB EF के बीच की लम्बवत् दूरी 4 है। तब चित्र-7.17 से, r = a + d

Question - 27 : - सूत्र υ2 = 2gh / (1 + k2/R2) को गतिकीय दृष्टि (अर्थात् बलों तथा बल-आघूर्गों विचार) से व्युत्पन्न कीजिए। जहाँ लोटनिक गति करते पिण्ड (वलय, डिस्क, बेलन या गोला) का आनत तल की तली में वेग है। आनत तल पर hवह ऊँचाई है जहाँ से पिण्ड गति प्रारम्भ करता है। K सममित अक्ष के परितः पिण्ड की घूर्णन त्रिज्या है और R पिण्ड की त्रिज्या है।

Answer - 27 : -

माना M द्रव्यमान तथा R त्रिज्या का कोई गोलीय पिण्ड, जिसका द्रव्यमान केन्द्र C है, ऐसे आनत तल पर लुढ़कता है, जो क्षैतिज से θ कोण पर झुका है। इस स्थिति में पिण्ड पर निम्नलिखित बल कार्य करते हैं

  1. पिण्ड का भार Mg, ऊर्ध्वाधर नीचे की ओर
  2. आनत तल की प्रतिक्रिया N, तल के लम्बवत् ऊपर की ओर
  3. आनत तल द्वारा पिण्ड पर आरोपित स्पर्शरेखीय चित्र-7.18 स्थैतिक घर्षण-बल fs आनत तल के समान्तर ऊपर की ओर।
घर्षण-बल fs ही पिण्ड को फिसलने से रोकता है। माना पिण्ड के द्रव्यमान केन्द्र का आनत तल के अनुदिश नीचे की ओर रेखीय त्वरण a है। इन बलों को आनत तल के समान्तर तथा लम्बवत् घटकों में वियोजित करने पर,

Question - 28 : - अपने अक्ष पर ω0 कोणीय चाल से घूर्णन करने वाली किसी चक्रिका को धीरे से (स्थानान्तरीय धक्का दिए बिना किसी पूर्णतः घर्षणरहित मेज पर रखा जाता है। चक्रिका की त्रिज्या R , है। चित्र-7.19 में दर्शाई चक्रिका के बिन्दुओं A, B तथा पर रैखिक वेग क्या हैं? क्या यहं चक्रिका चित्र में दर्शाई दिशा में लोटनिक गति करेगी?

Answer - 28 : -

चूँकि चक्रिका तथा मेज के बीच कोई घर्षण बल नहीं है; अत: चक्रिका लोटनिक गति नहीं कर पाएगी तथा मेज के एक ही बिन्दु B के संम्पर्क में रहते हुए अपनी अक्ष के परितः शुद्ध घूर्णी गति करती रहेगी।
बिन्दु A की अक्ष से दूरी = R
बिन्दु A पर रैखिक वेग υA = R ω0 तीर की दिशा में होगा।
इसी प्रकार बिन्दु B पर रैखिक वेग υB = R ω0
बिन्दु B पर दिखाए गए तीर के विपरीत दिशा में होगा।
बिन्दु C की अक्ष से दूरी
बिन्दु C पर रैखिक वेग υc = ω0 क्षैतिजत: बाएँ से दाएँ को होगा।

यह पहले ही स्पष्ट है कि चक्रिका लोटनिक गति नहीं करेगी।

Question - 29 : -
स्पष्ट कीजिए कि चित्र-7.19 में अंकित दिशा में चक्रिका की लोटनिक गति के लिए घर्षण होना आवश्यक क्यों है?
(a) B पर घर्षण बल की दिशा तथा परिशुद्ध लुढ़कन आरम्भ होने से पूर्व घर्षणी बल-आघूर्ण की दिशा क्या है?
(b) परिशुद्ध लोटनिक गति आरम्भ होने के पश्चात् घर्षण बल क्या है?

Answer - 29 : -

चक्रिका मूलतः शुद्ध घूर्णी गति कर रही है जबकि लोटनिक गति प्रारम्भ होने का अर्थ घूर्णी गति के साथ-साथ स्थानान्तरीय गति का भी होना है, परन्तु स्थानान्तरीय गति प्रारम्भ होने के लिए बाह्य बल आवश्यक है। अत: चक्रिका की लोटनिक गति होने के लिए घर्षण बल (वर्णित परिस्थिति में एकमात्र बाह्य बले घर्षण बल ही हो सकता है) आवश्यक है।
(a) बिन्दु B पर घर्षण बल की दिशा तीर द्वारा प्रदर्शित दिशा में (बिन्दु B की अपनी गति की दिशा के विपरीत) है जबकि घर्षण बल के कारण उत्पन्न बल-आघूर्ण की दिशा कागज के तल के लम्बवत् बाहर की ओर है।
(b) घर्षण बल बिन्दु B को मेज के सम्पर्क बिन्दु के सापेक्ष विराम में लाना चाहता है, जब ऐसा हो जाता है तो परिशुद्ध लोटनिक गति प्रारम्भ हो जाती है।
अब चूँकि सम्पर्क बिन्दु पर कोई सरकन नहीं है; अतः घर्षण बल शून्य हो जाता है।

Question - 30 : - 10 cm त्रिज्या की कोई ठोस चक्रिका तथा इतनी ही त्रिज्या का कोई छल्ला किसी क्षतिज मेज पर एक ही क्षण 10 π rad s-1 की कोणीय चाल से रखे जाते हैं। इनमें से कौन पहले लोटनिक गति आरम्भ कर देगा। गतिज घर्षण गुणांक µk =0.2

Answer - 30 : - माना मेज पर रखे जाने के t s पश्चात् कोई पिण्ड लोटनिक गति प्रारम्भ करता है। द्रव्यमान केन्द्र की स्थानान्तरीय गति प्रारम्भ कराने के लिए आवश्यक बल घर्षण बल से मिलता है। यदि इस दौरान द्रव्यमान केन्द्र का त्वरण a है तो
F = ma
से, µk mg = ma

चक्रिका तथा छल्ले को लोटनिक गतिप्रारम्भ करने में क्रमश: 0.17s तथा 0.25s लगेंगे। स्पष्ट है कि चक्रिको पहले लोटनिक गति प्रारम्भ करेगी।

Free - Previous Years Question Papers
Any questions? Ask us!
×