MENU
Question -

Obtain the maximum kinetic energy of β-particles,and the radiation frequencies of γ decays in the decay schemeshown in Fig. 13.6. You are given that

(198Au) = 197.968233 u

(198Hg)=197.966760 u

                                                                 



Answer -

It can be observed from the given γ-decaydiagram that γ1 decays from the 1.088 MeV energylevel to the 0 MeV energy level.

Hence, the energy corresponding to γ1-decayis given as:

E1 = 1.088 − 0 =1.088 MeV

1= 1.088 × 1.6 × 10−19 ×106 J

Where,

h = Planck’s constant = 6.6 × 10−34 Js

ν= Frequency of radiationradiated by γ1-decay

It can be observed from the given γ-decaydiagram that γ2 decays from the 0.412 MeV energylevel to the 0 MeV energy level.

Hence, the energy corresponding to γ2-decayis given as:

E2 = 0.412 − 0 =0.412 MeV

2= 0.412 × 1.6 × 10−19 ×106 J

Where,

ν= Frequency of radiationradiated by γ2-decay

 

It can be observed from the given γ-decaydiagram that γ3 decays from the 1.088 MeV energylevel to the 0.412 MeV energy level.

Hence, the energy corresponding to γ3-decayis given as:

E3 = 1.088 − 0.412= 0.676 MeV

3= 0.676 × 10−19 ×106 J

Where,

ν=Frequency of radiation radiated by γ3-decay
Mass of = 197.968233 u
Mass of = 197.966760 u

1 u = 931.5 MeV/c2

Energy of the highest level is given as:

βdecays from the 1.3720995MeV level to the 1.088 MeV level

Maximum kineticenergy of the βparticle = 1.3720995 − 1.088

= 0.2840995 MeV

βdecays from the 1.3720995MeV level to the 0.412 MeV level

Maximum kineticenergy of the βparticle = 1.3720995 − 0.412

= 0.9600995 MeV

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×