MENU
Question -

The equation of the directrix of a hyperbola is x тАУ y + 3 = 0. Its focus is (-1, 1) and eccentricity 3. Find the equation of the hyperbola.



Answer -

Given:

The equation of the directrix of a hyperbola => x тАУ y + 3= 0.

Focus = (-1, 1) and

Eccentricity = 3

Now, let us find the equation of the hyperbola

Let тАШMтАЩ be the point on directrix and P(x, y) be any pointof the hyperbola.

By using the formula,

e = PF/PM

PF = ePM [where, e is eccentricity, PM is perpendicular fromany point P on hyperbola to the directrix]

So,

[We know that┬а(a тАУ b)2┬а=a2┬а+ b2┬а+ 2ab &(a + b + c)2┬а=a2┬а+ b2┬а+ c2┬а+ 2ab + 2bc + 2ac]

So, 2{x2┬а+ 1 + 2x + y2┬а+ 1 тАУ2y} = 9{x2┬а+ y2+ 9 + 6x тАУ 6y тАУ 2xy}

2x2┬а+ 2 + 4x + 2y2┬а+ 2 тАУ 4y= 9x2┬а+ 9y2+ 81 + 54x тАУ 54y тАУ 18xy

2x2┬а+ 4 + 4x + 2y2тАУ 4y тАУ 9x2┬атАУ9y2┬атАУ 81 тАУ 54x + 54y + 18xy = 0

тАУ 7x2┬атАУ 7y2┬атАУ 50x + 50y +18xy тАУ 77 = 0

7(x2┬а+ y2) тАУ 18xy + 50x тАУ 50y +77 = 0

тИ┤The equation of hyperbola is 7(x2┬а+ y2)тАУ 18xy + 50x тАУ 50y + 77 = 0

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×