MENU
Question -

Find the equation of the parabola, if
(i) the focus is at (-6, 6) and the vertex is at (-2, 2)
(ii) the focus is at (0, -3) and the vertex is at (0, 0)
(iii) the focus is at (0, -3) and the vertex is at (-1, -3)
(iv) the focus is at (a, 0) and the vertex is at (a′, 0)
(v) the focus is at (0, 0) and the vertex is at the intersection of the lines x + y = 1 and x – y = 3.



Answer -

(i) the focus is at (-6, 6) and the vertex is at (-2, 2)

Given:

Focus = (-6, 6)

Vertex = (-2, 2)

Let us find the slope of the axis (m1) =(6-2)/(-6-(-2))

= 4/-4

= -1

Let us assume m2 be the slope of thedirectrix.

m1m2 = -1

-1m2 = -1

m2 = 1

Now, let us find the point on directrix.

(-2, 2) = [(x-6/2), (y+6)/2]

By equating we get,

(x-6/2) = -2 and (y+6)/2 = 2

x-6 = -4 and y+6 = 4

x = -4+6 and y = 4-6

x = 2 and y = -2

So the point of directrix is (2, -2).

We know that the equation of the lines passing through (x1,y1) and having slope m is y – y1 = m(x – x1)

y – (-2) = 1(x – 2)

y + 2 = x – 2

x – y – 4 = 0

Let us assume P(x, y) be any point on the parabola.

The distance between two points (x1, y1)and (x2, y2) is given as:

And the perpendicular distance from the point (x1,y1) to the line ax + by + c = 0 is

So by equating both, we get

Now by cross multiplying, we get

2x2 + 2y2 + 24x – 24y + 144= x2 + y2 – 8x + 8y – 2xy + 16

x2 + y2 + 2xy + 32x – 32y +128 = 0

The equation of the parabola is x2 + y2 +2xy + 32x – 32y + 128 = 0

(ii) the focus is at (0, -3) and the vertex is at (0, 0)

Given:

Focus = (0, -3)

Vertex = (0, 0)

Let us find the slope of the axis (m1) =(-3-0)/(0-0)

= -3/0

= ∞

Since the axis is parallel to the x-axis, the slope of thedirectrix is equal to the slope of x-axis = 0

So, m2 = 0

Now, let us find the point on directrix.

(0, 0) = [(x-0/2), (y-3)/2]

By equating we get,

(x/2) = 0 and (y-3)/2 = 0

x = 0 and y – 3 = 0

x = 0 and y = 3

So the point on directrix is (0, 3).

We know that the equation of the lines passing through (x1,y1) and having slope m is y – y1 = m(x – x1)

y – 3 = 0(x – 0)

y – 3 = 0

Now, let us assume P(x, y) be any point on the parabola.

The distance between two points (x1, y1)and (x2, y2) is given as:

And the perpendicular distance from the point (x1,y1) to the line ax + by + c = 0 is

So by equating both, we get

Now by cross multiplying, we get

x2 + y2 + 6y + 9 = y2 –6y + 9

x2 + 12y = 0

The equation of the parabola is x2 + 12y =0

(iii) the focus is at (0, -3) and the vertex is at (-1, -3)

Given:

Focus = (0, -3)

Vertex = (-1, -3)

Let us find the slope of the axis (m1) =(-3-(-3))/(0-(-1))

= 0/1

= 0

We know, the products of the slopes of the perpendicularlines is – 1 for non – vertical lines.

Here the slope of the axis is equal to the slope of the x –axis. So, the slope of directrix is equal to the slope of y – axis i.e., ∞.

So, m2 = ∞

Now let us find the point on directrix.

(-1, -3) = [(x+0/2), (y-3)/2]

By equating we get,

(x/2) = -1 and (y-3)/2 = -3

x = -2 and y – 3 = -6

x = -2 and y = -6+3

x = -2 and y = -3

So, the point on directrix is (-2, -3)

We know that the equation of the lines passing through (x1,y1) and having slope m is y – y1 = m(x – x1)

y – (- 3) = ∞(x – (- 2))

(y+3)/ ∞ = x + 2

x + 2 = 0

Now, let us assume P(x, y) be any point on the parabola.

The distance between two points (x1, y1)and (x2, y2) is given as:

And the perpendicular distance from the point (x1,y1) to the line ax + by + c = 0 is

So by equating both, we get

By cross multiplying, we get

x2 + y2 + 6y + 9 = x2 +4x + 4

y2 – 4x + 6y + 5 = 0

The equation of the parabola is y2 – 4x +6y + 5 = 0

(iv) the focus is at (a, 0) and the vertex is at (a′, 0)

Given:

Focus = (a, 0)

Vertex = (a′, 0)

Let us find the slope of the axis (m1) =(0-0)/(a′, a)

= 0/(a′, a)

= 0

We know, the products of the slopes of the perpendicularlines is – 1 for non – vertical lines.

Here the slope of the axis is equal to the slope of the x –axis. So, the slope of directrix is equal to the slope of y – axis i.e., ∞.

So, m2 = ∞

Now let us find the point on directrix.

(a′, 0)= [(x+a/2), (y+0)/2]

By equating we get,

(x+a/2) = a′ and (y)/2 = 0

x + a = 2a′ and y = 0

x = (2a′ – a) and y = 0

So the point on directrix is (2a′ – a, 0).

We know that the equation of the lines passing through (x1,y1) and having slope m is y – y1 = m(x – x1)

y – (0) = ∞(x – (2a′ – a))

y/∞ = x + a – 2a′

x + a – 2a′ = 0

Now, let us assume P(x, y) be any point on the parabola.

The distance between two points (x1, y1)and (x2, y2) is given as:

And the perpendicular distance from the point (x1,y1) to the line ax + by + c = 0 is

So by equating both, we get

By cross multiplying we get,

x2 + y2 – 2ax + a2 =x2 + a2 + 4(a′)2 + 2ax – 4aa′ –4a′x

y2 – (4a – 4a′)x + a2 –4(a′)2 + 4aa′ = 0

The equation of the parabola is y2 – (4a –4a′)x + a2 – 4(a′)2 + 4aa′ = 0

(v) the focus is at (0, 0) and the vertex is at the intersectionof the lines x + y = 1 and x – y = 3.

Given:

Focus = (0, 0)

Vertex = intersection of the lines x + y = 1 and x – y = 3.

So the intersecting point of above lines is (2, -1)

Vertex = (2, -1)

Slope of axis (m1) = (-1-0)/(2-0)

= -1/2

We know that the products of the slopes of the perpendicularlines is – 1.

Let us assume m2 be the slope of thedirectrix.

m1.m2 = -1

-1/2 . m2 = -1

So m2 = 2

Now let us find the point on directrix.

(2, -1) = [(x+0)/2, (y+0)/2]

(x)/2 = 2 and y/2 = -1

x = 4 and y = -2

The point on directrix is (4, – 2).

We know that the equation of the lines passing through (x1,y1) and having slope m is y – y1 = m(x – x1)

y – (- 2) = 2(x – 4)

y + 2 = 2x – 8

2x – y – 10 = 0

Now, let us assume P(x, y) be any point on the parabola.

The distance between two points (x1, y1)and (x2, y2) is given as:

And the perpendicular distance from the point (x1,y1) to the line ax + by + c = 0 is

So by equating both, we get

By cross multiplying, we get

5x2 + 5y2 = 4x2 +y2 – 40x + 20y – 4xy + 100

x2 + 4y2 + 4xy + 40x – 20y –100 = 0

The equation of the parabola is x2 + 4y2 +4xy + 40x – 20y – 100 = 0

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×