MENU
Question -

Find the eccentricity, coordinatesof the foci, equations of directrices and length of the latus-rectum of thehyperbola.
(i) 9x2 – 16y2 = 144

(ii) 16x2 – 9y2 =-144

(iii) 4x2 – 3y2 =36

(iv) 3x2 – y2 =4

(v) 2x2 – 3y2 =5



Answer -

(i) 9x2 – 16y2 = 144

Given:

The equation => 9x2 – 16y2 =144

The equation can be expressed as:

The obtained equation is of the form

Where, a2 = 16, b2 = 9 i.e.,a = 4 and b = 3

Eccentricity is given by:

Foci: The coordinates of the foci are (0, ±be)

(0, ±be) = (0, ±4(5/4))

= (0, ±5)

The equation of directrices is given as:

5x 16 = 0

The length of latus-rectum is given as:

2b2/a

= 2(9)/4

= 9/2

(ii) 16x2 – 9y2 = -144

Given:

The equation => 16x2 – 9y2 =-144

The equation can be expressed as:

The obtained equation is of the form

Where, a2 = 9, b2 = 16 i.e.,a = 3 and b = 4

Eccentricity is given by:

Foci: The coordinates of the foci are (0, ±be)

(0, ±be) = (0, ±4(5/4))

= (0, ±5)

The equation of directrices is given as:

The length of latus-rectum is given as:

2a2/b

= 2(9)/4

= 9/2

(iii) 4x2 – 3y2 = 36

Given:

The equation => 4x2 – 3y2 =36

The equation can be expressed as:

The obtained equation is of the form

Where, a2 = 9, b2 = 12 i.e.,a = 3 and b = √12

Eccentricity is given by:

Foci: The coordinates of the foci are (±ae, 0)

(±ae, 0) = (±√21,0)

The equation of directrices is given as:

The length of latus-rectum is given as:

2b2/a

= 2(12)/3

= 24/3

= 8

(iv) 3x2 – y2 = 4

Given:

The equation => 3x2 – y2 =4

The equation can be expressed as:

The obtained equation is of the form

Where, a = 2/√3 and b = 2

Eccentricity is given by:

Foci: The coordinates of the foci are (±ae, 0)

(±ae, 0) = ±(2/√3)(2) = ±4/√3

(±ae, 0) = (±4/√3, 0)

The equation of directrices is given as:

The length of latus-rectum is given as:

2b2/a

= 2(4)/[2/√3]

= 4√3

(v) 2x2 – 3y2 = 5

Given:

The equation => 2x2 – 3y2 =5

The equation can be expressed as:

The obtained equation is of the form

Where, a = √5/√2 and b = √5/√3

Eccentricity is given by:

Foci: The coordinates of the foci are (±ae, 0)

(±ae, 0) = (±5/√6, 0)

The equation of directrices is given as:

The length of latus-rectum is given as:

2b2/a

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×