Question -
Answer -
Let us consider LHS:
sin2 24o – sin2 6o
we know, sin (A + B) sin (A – B) = sin2A –sin2B
Then the above equation becomes,
sin2 24o – sin2 6o =sin (24o + 6o) – sin (24o – 6o)
= sin 30o – sin 18o
= sin 30o – (√5 – 1)/4 [since, sin 18o =(√5 – 1)/4]
= 1/2 × (√5 – 1)/4
= (√5 – 1)/8
= RHS
Hence proved.