MENU
Question -

sin 5x =5 sin x – 20 sin3 x + 16 sin5 x



Answer -

Let us consider LHS:

sin 5x

Now,

sin 5x = sin (3x + 2x)

But we know,

Sin (x + y) = sin x cos y + cos x sin y…..(i)

So,

sin 5x = sin 3x cos 2x + cos 3x sin 2x

= sin (2x + x) cos 2x + cos (2x + x) sin 2x……..(ii)

And

cos (x + y) = cos x cos y – sin x sin y……(iii)

Now substituting equation (i) and (iii) in equation(ii), we get

sin 5x = (sin 2x cos x + cos 2x sin x ) cos 2x + ( cos2x cos x – sin 2x sin x) sin 2x

= sin 2x cos 2x cos x + cos2 2x sin x+ (sin 2x cos 2x cos x – sin2 2x sin x)

= 2sin 2x cos 2x cos x + cos2 2x sin x– sin2 2x sin x …….(iv)

Now sin 2x = 2sin x cos x………(v)

And cos 2x = cos2x – sin2x………(vi)

Substituting equation (v) and (vi) in equation (iv),we get

sin 5x = 2(2sin x cos x) (cos2x –sin2x)cos x + (cos2x – sin2x)sin x – (2sin xcos x)sin x

= 4(sin x cos2 x) ([1– sin2x]– sin2x) + ([1–sin2x] – sin2x)sinx – (4sin2 x cos2 x)sin x

(as cos2x + sin2x = 1  cos2x =1– sin2x)

sin 5x = 4(sin x [1 – sin2x]) (1 – 2sin2x)+ (1 – 2sin2x)sin x – 4sin3 x [1 –sin2x]

= 4sin x (1 – sin2x) (1 – 2sinx)+ (1 – 4sin2x + 4sin4x) sin x – 4sin3 x +4sin5x

= (4sin x – 4sin3x) (1 – 2sin2x)+ sin x – 4sin3x + 4sin5x – 4sin3 x +4sin5x

= 4sin x – 8sin3x – 4sin3x +8sin5x + sin x – 8sin3x + 8sin5x

= 5sin x – 20sin3x + 16sin5x

= RHS

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×