MENU
Question -

sin 5x =5 cos4┬аx sin x тАУ 10 cos2┬аx sin3┬аx+ sin5┬аx



Answer -

Let us consider LHS:

sin 5x

Now,

sin 5x = sin (3x + 2x)

But we know,

Sin (x + y) = sin x cos y + cos x sin yтАж..(i)

So,

sin 5x = sin 3x cos 2x + cos 3x sin 2x

= sin (2x + x) cos 2x + cos (2x + x) sin 2xтАжтАж..(ii)

And

cos (x + y) = cos x cos y тАУ sin x sin yтАжтАж(iii)

Now substituting equation (i) and (iii) in equation(ii), we get

sin 5x = (sin 2x cos x + cos 2x sin x ) cos 2x + ( cos2x cos x тАУ sin 2x sin x) sin 2x тАж (iv)

Now sin 2x = 2sin x cos xтАжтАжтАж(v)

And cos 2x = cos2x тАУ sin2xтАжтАжтАж(vi)

Substituting equation (v) and (vi) in equation (iv),we get

sin 5x = [(2 sin x cos x) cos x + (cos2x тАУsin2x) sin x] (cos2x тАУ sin2x) + [(cos2xтАУ sin2x) cos x тАУ (2 sin x cos x) sin x)] (2 sin x cos x)

= [2 sin x cos2┬аx + sin x cos2xтАУ sin3x] (cos2x тАУ sin2x) + [cos3x тАУsin2x cos x тАУ 2 sin2┬аx cos x] (2 sin x cos x)

= cos2x [3 sin x cos2┬аx тАУsin3x] тАУ sin2x [3 sin x cos2┬аx тАУ sin3x]+ 2 sin x cos4x тАУ 2 sin3┬аx cos2┬аx тАУ4 sin3┬аx cos2┬аx

= 3 sin x cos4┬аx тАУ sin3xcos2x тАУ 3 sin3┬аx cos2┬аx тАУ sin5x+ 2 sin x cos4x тАУ 2 sin3┬аx cos2┬аx тАУ4 sin3┬аx cos2┬аx

= 5 sin x cos4┬аx тАУ10sin3xcos2x+sin5x

= RHS

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×