MENU
Question -

cos3┬аxsin 3x + sin3┬аx cos 3x = 3/4 sin 4x



Answer -

We know that,

cos 3╬╕ = 4cos3╬╕ тАУ 3cos╬╕

So, 4 cos3╬╕ = cos3╬╕ + 3cos╬╕

cos3┬а╬╕ = [cos3╬╕ + 3cos╬╕]/4 тАжтАж (i)

Similarly,

sin 3╬╕ = 3sin ╬╕ тАУ 4sin3┬а╬╕

4 sin3╬╕ = 3sin╬╕ тАУ sin┬а3╬╕

sin3╬╕ = [3sin╬╕ тАУ sin┬а3╬╕]/4 тАжтАж.. (ii)

Now,

Let us consider LHS:

cos3┬аx sin 3x + sin3┬аxcos 3x

Substituting the values from equation (i) and (ii), weget

cos3┬аx sin 3x + sin3┬аxcos 3x = (cos 3x + 3 cos x)/4 sin 3x + (3sin x тАУ sin 3x)/4 cos 3x

= 1/4 (sin 3x cos 3x + 3 sin 3x cox x + 3sin x cos 3xтАУ sin 3x cos 3x)

= 1/4 (3(sin 3x cos x + sin x cos 3x) + 0)

= 1/4 (3 sin (3x + x))

(We know, sin(x + y) = sin x cos y + cos x sin y)

= 3/4 sin 4x

= RHS

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×