MENU

Chapter 9 Sequences and Series Ex 9.3 Solutions

Question - 21 : -

Find four numbers forming a geometric progression in which third term isgreater than the first term by 9, and the second term is greater than the 4th by18.

Answer - 21 : -

Consider a tobe the first term and r to be the common ratioof the G.P.

Then,

a1 = aa2 = ara3 = ar2a4 = ar3

From the question, wehave

a3 = a1 + 9

ar2 = a + 9 … (i)

a2 = a4 + 18

ar ar3 + 18 … (ii)

So, from (1) and (2),we get

a(r2 – 1) = 9 … (iii)

ar (1– r2) = 18 … (iv)

Now, dividing (4) by(3), we get

-r = 2

r = -2

On substituting thevalue of r in (i), we get

4a +9

3a = 9

 a =3

Therefore, the firstfour numbers of the G.P. are 3, 3(– 2), 3(–2)2, and 3(–2)3

i.e., 3¸–6, 12, and–24.

Question - 22 : -

If the pth, qth and rth termsof a G.P. are a, b and c, respectively. Prove thataq-r br-p cp-q = 1

Answer - 22 : -

Let’s take A tobe the first term and R to be the common ratio of the G.P.

Then according to thequestion, we have

ARp–1 a

ARq–1 b

ARr–1 c

Then,

aq–r br–p cp–q

Aq× R(p–1)(q–r) × Arp × R(q–1)(rp) × Apq × R(–1)(pq)

Aq – r + r – p + p – q × R (pr – pr – q + r)+ (rq – r p – pq) +(pr – p – qr + q)

A0 × R0

= 1

Hence proved.

Question - 23 : -

If the first and the nth term of a G.P.are a ad b, respectively, and if P isthe product of n terms, prove that P2 =(ab)n.

Answer - 23 : -

Given, the first termof the G.P is a and the last term is b.

Thus,

The G.P. is aarar2ar3,… arn–1, where r is thecommon ratio.

Then,

b = arn–1 … (1)

P = Product of n terms

= (a) (ar)(ar2) … (arn–1)

= (a × a ×…a)(r × r2 × …rn–1)

an r 1+ 2 +…(n–1)  … (2)

Here, 1, 2, …(n –1) is an A.P.

And, the product of nterms P is given by,

Question - 24 : - Show that the ratio of the sum of first n termsof a G.P. to the sum of terms from  

Answer - 24 : -

Let a bethe first term and be the common ratio of the G.P.

Since there are n termsfrom (n +1)th to (2n)th term,

Sum of terms from(n +1)th to (2n)th term

a +1 = ar n+ 1 – 1 = arn

Thus, required ratio =

Thus, the ratio of thesum of first n terms of a G.P. to the sum of terms from (n +1)th to (2n)th term is 

Question - 25 : - If a, b, c and d arein G.P. show that (a2 + b2 + c2)(b2 +c2 + d2) = (ab + bc + cd)2.

Answer - 25 : -

Given, abcd arein G.P.

So, we have

bc = ad  … (1)

b2 = ac  … (2)

c2 = bd  … (3)

Taking the R.H.S. wehave

R.H.S.

= (ab + bc + cd)2

= (ab + ad cd)2 [Using (1)]

= [ab + d (a + c)]2

a2b2 +2abd (a + c) + d2 (a + c)2

a2b2 +2a2bd +2acbd + d2(a2 + 2ac + c2)

a2b2 +2a2c2 + 2b2c2 + d2a2 +2d2b2 + d2c2 [Using (1) and (2)]

a2b2 + a2c2 + a2c2 + b2cb2c2 + d2a2 + d2b2 + d2b2 + d2c2

a2b2 + a2c2 + a2db× b2 + b2c2 + b2d2 + c2b2 + c× c2 + c2d2

[Using(2) and (3) and rearranging terms]

a2(b2 + c2 + d2)+ b2 (b2 + c2 + d2)+ c2 (b2c2 + d2)

= (a2 + b2 + c2)(b2 + c2 + d2)

= L.H.S.

Thus, L.H.S. = R.H.S.

Therefore,

(a2 +b2 + c2)(b2 + c2 + d2)= (ab + bc + cd)2

Question - 26 : -

Insert two numbers between 3 and 81 so that the resulting sequence isG.P.

Answer - 26 : -

Let’s assume G1 and G2 tobe two numbers between 3 and 81 such that the series 3, G1G2,81 forms a G.P.

And let a bethe first term and r be the common ratio of the G.P.

Now, we have the 1st termas 3 and the 4th term as 81.

81 = (3) (r)3

r3 = 27

 r =3 (Taking real roots only)

For r =3,

G1 = ar = (3) (3) = 9

G2 = ar2 = (3) (3)2 =27

Therefore, the twonumbers which can be inserted between 3 and 81 so that the resulting sequencebecomes a G.P are 9 and 27.

Question - 27 : -

Find the value of n so that may be the geometricmean between a and b.

Answer - 27 : -

We know that,

The G. M. of a and b is givenby √ab.

Then from thequestion, we have

By squaring bothsides, we get

Question - 28 : - The sum of two numbers is 6 times theirgeometric mean, show that numbers are in the ratio

Answer - 28 : -

Consider the twonumbers be a and b.

Then, G.M. = √ab.

From the question, wehave

Question - 29 : - If A and G be A.M. and G.M., respectively between two positive numbers, prove that the
numbers are .

Answer - 29 : -

Given that A and G areA.M. and G.M. between two positive numbers.

And, let these twopositive numbers be a and b.

Question - 30 : -

The number of bacteria in a certain culture doubles every hour. If therewere 30 bacteria present in the culture originally, how many bacteria will bepresent at the end of 2nd hour, 4th hourand nth hour?

Answer - 30 : -

Given, the number ofbacteria doubles every hour. Hence, the number of bacteria after every hourwill form a G.P.

Here we have, a =30 and r = 2

So, a3 = ar2 =(30) (2)2 = 120

Thus, the number ofbacteria at the end of 2nd hour will be 120.

And, a5 = ar4 =(30) (2)4 = 480

The number of bacteriaat the end of 4th hour will be 480.

an +1 arn = (30) 2n

Therefore, the numberof bacteria at the end of nth hour will be 30(2)n.

Free - Previous Years Question Papers
Any questions? Ask us!
×