MENU

Chapter 9 Sequences and Series Ex 9.1 Solutions

Question - 11 : - Write the first five terms of each of the sequences in Exercises 11 to 13 and obtain the corresponding series:

a1┬а= 3, an┬а= 3an-1┬а+ 2for all n > 1

Answer - 11 : -

Given, an┬а=3an-1┬а+ 2 and a1┬а= 3

Then,

a2┬а=3a1┬а+ 2 = 3(3) + 2 = 11

a3┬а=3a2┬а+ 2 = 3(11) + 2 = 35

a4┬а=3a3┬а+ 2 = 3(35) + 2 = 107

a5┬а=3a4┬а+ 2 = 3(107) + 2 = 323

Thus, the first 5terms of the sequence are 3, 11, 35, 107 and 323.

Hence, thecorresponding series is

3 + 11 + 35 + 107 +323 тАжтАж.

Question - 12 : - Write the first five terms of each of the sequences in Exercises 11 to 13 and obtain the corresponding series:

a1┬а= -1, an┬а= an-1/n, n тЙе 2

Answer - 12 : -

Given,

an┬а= an-1/nand a1┬а= -1

Then,

a2┬а= a1/2= -1/2

a3┬а= a2/3= -1/6

a4┬а= a3/4= -1/24

a5┬а= a4/5= -1/120

Thus, the first 5terms of the sequence are -1, -1/2, -1/6, -1/24 and -1/120.

Hence, thecorresponding series is

-1 + (-1/2) + (-1/6) +(-1/24) + (-1/120) + тАжтАж.

Question - 13 : - Write the first five terms of each of the sequences in Exercises 11 to 13 and obtain the corresponding series:

a1┬а= a2┬а= 2, an┬а= an-1┬атАУ1, n > 2

Answer - 13 : -

Given,

a1┬а= a2,an┬а= an-1┬атАУ 1

Then,

a3┬а= a2┬атАУ1 = 2 тАУ 1 = 1

a4┬а= a3┬атАУ1 = 1 тАУ 1 = 0

a5┬а= a4┬атАУ1 = 0 тАУ 1 = -1

Thus, the first 5terms of the sequence are 2, 2, 1, 0 and -1.

The correspondingseries is

2 + 2 + 1 + 0 + (-1) +тАжтАж

Question - 14 : -

The Fibonacci sequence is defined by

1 = a1┬а= a2┬аand an┬а= anтАУ 1┬а+ an тАУ 2, n > 2

Find an+1/an, for n = 1, 2, 3, 4, 5┬а

Answer - 14 : -

Given,

1 = a1┬а=a2

an┬а= anтАУ 1┬а+ an тАУ 2, n > 2

So,

a3┬а= a2┬а+a1┬а= 1 + 1 = 2

a4┬а= a3┬а+a2┬а= 2 + 1 = 3

a5┬а= a4┬а+a3┬а= 3 + 2 = 5

a6┬а= a5┬а+a4┬а= 5 + 3 = 8

Thus,

Free - Previous Years Question Papers
Any questions? Ask us!
×