MENU
Question -

7. P and Q are respectively the mid-points ofsides AB and BC of a triangle ABC and R is the mid-point of AP, show that:

(i) ar (PRQ) = ½ ar (ARC)

(ii) ar (RQC) = (3/8) ar (ABC)

(iii)ar (PBQ) = ar (ARC)



Answer -

(i)

We know that, mediandivides the triangle into two triangles of equal area,

PC is the median ofABC.

Ar (ΔBPC) = ar (ΔAPC)……….(i)

RC is the median ofAPC.

Ar (ΔARC) = ½ ar(ΔAPC) ……….(ii)

PQ is the median ofBPC.

Ar (ΔPQC) = ½ ar(ΔBPC) ……….(iii)

From eq. (i) and(iii), we get,

ar (ΔPQC) = ½ ar(ΔAPC) ……….(iv)

From eq. (ii) and(iv), we get,

ar (ΔPQC) = ar (ΔARC)……….(v)

P and Q are themid-points of AB and BC respectively [given]

PQ||AC

and, PA = ½ AC

Since, trianglesbetween same parallel are equal in area, we get,

ar (ΔAPQ) = ar (ΔPQC)……….(vi)

From eq. (v) and (vi),we obtain,

ar (ΔAPQ) = ar (ΔARC)……….(vii)

R is the mid-point ofAP.

, RQ is the median ofAPQ.

Ar (ΔPRQ) = ½ ar(ΔAPQ) ……….(viii)

From (vii) and (viii),we get,

ar (ΔPRQ) = ½ ar (ΔARC)

Hence Proved.


(ii) PQ is the medianof ΔBPC

ar (ΔPQC) = ½ ar(ΔBPC)

= (½) ×(1/2 )ar (ΔABC)

= ¼ ar (ΔABC) ……….(ix)

Also,

ar (ΔPRC) = ½ ar(ΔAPC) [From (iv)]

ar (ΔPRC) =(1/2)×(1/2)ar ( ABC)

= ¼ ar(ΔABC) ……….(x)

Add eq. (ix) and (x),we get,

ar (ΔPQC) + ar (ΔPRC)= (1/4)×(1/4)ar (ΔABC)

ar (quad. PQCR) = ¼ ar(ΔABC) ……….(xi)

Subtracting ar (ΔPRQ)from L.H.S and R.H.S,

ar (quad. PQCR)–ar(ΔPRQ) = ½ ar (ΔABC)–ar (ΔPRQ)

ar (ΔRQC) = ½ ar(ΔABC) – ½ ar (ΔARC) [From result (i)]

ar (ΔARC) = ½ ar(ΔABC) –(1/2)×(1/2)ar (ΔAPC)

ar (ΔRQC) = ½ ar(ΔABC) –(1/4)ar (ΔAPC)

ar (ΔRQC) = ½ ar(ΔABC) –(1/4)×(1/2)ar (ΔABC) [ As, PC is median of ΔABC]

ar (ΔRQC) = ½ ar(ΔABC)–(1/8)ar (ΔABC)

ar (ΔRQC) =[(1/2)-(1/8)]ar (ΔABC)

ar (ΔRQC) = (3/8)ar(ΔABC)


(iii) ar (ΔPRQ) = ½ ar(ΔARC) [From result (i)]

2ar (ΔPRQ) = ar (ΔARC)……………..(xii)

ar (ΔPRQ) = ½ ar(ΔAPQ) [RQ is the median of APQ] ……….(xiii)

But, we know that,

ar (ΔAPQ) = ar (ΔPQC)[From the reason mentioned in eq. (vi)] ……….(xiv)

From eq. (xiii) and(xiv), we get,

ar (ΔPRQ) = ½ ar(ΔPQC) ……….(xv)

At the same time,

ar (ΔBPQ) = ar (ΔPQC)[PQ is the median of ΔBPC] ……….(xvi)

From eq. (xv) and(xvi), we get,

ar (ΔPRQ) = ½ ar(ΔBPQ) ……….(xvii)

From eq. (xii) and(xvii), we get,

2×(1/2)ar(ΔBPQ)= ar(ΔARC)

ar (ΔBPQ) = ar (ΔARC)

Hence Proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×