MENU
Question -

In Fig. 9.25, diagonals AC and BD of quadrilateral ABCD intersect at Osuch that OB = OD.
If AB = CD, then show that:

(i) ar (DOC) = ar (AOB)

(ii) ar (DCB) = ar (ACB)

(iii) DA || CB or ABCD is a parallelogram.
[Hint : From D and B, draw perpendiculars to AC.]



Answer -

Given,

OB = OD and AB = CD

Construction,

DE AC and BF AC are drawn.

Proof:

(i) In ΔDOE and ΔBOF,

DEO = BFO (Perpendiculars)

DOE = BOF (Vertically opposite angles)

OD = OB (Given)

, ΔDOE ΔBOF by AAS congruence condition.

, DE = BF (By CPCT) —(i)

also, ar(ΔDOE) =ar(ΔBOF) (Congruent triangles) — (ii)

Now,

In ΔDEC and ΔBFA,

DEC = BFA (Perpendiculars)

CD = AB (Given)

DE = BF (From i)

, ΔDEC ΔBFA by RHS congruence condition.

, ar(ΔDEC) = ar(ΔBFA)(Congruent triangles) — (iii)

Adding (ii) and (iii),

ar(ΔDOE) + ar(ΔDEC) =ar(ΔBOF) + ar(ΔBFA)

 ar (DOC) = ar(AOB)

(ii) ar(ΔDOC) =ar(ΔAOB)

Adding ar(ΔOCB) in LHSand RHS, we get,

ar(ΔDOC) + ar(ΔOCB) =ar(ΔAOB) + ar(ΔOCB)

 ar(ΔDCB) =ar(ΔACB)

(iii) When twotriangles have same base and equal areas, the triangles will be in between thesame parallel lines

ar(ΔDCB) = ar(ΔACB)

DA || BC — (iv)

For quadrilateral ABCD,one pair of opposite sides are equal (AB = CD) and other pair of opposite sidesare parallel.

, ABCD isparallelogram.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×