MENU
Question -

D, E and F are respectively the mid-points of the sides BC, CA and ABof a ΔABC.
Show that

(i) BDEF is a parallelogram.        

(ii) ar(DEF) = ¼ ar(ABC)

(iii) ar (BDEF) = ½ ar(ABC)



Answer -

(i) In ΔABC,

EF || BC and EF = ½ BC(by mid point theorem)

also,

BD = ½ BC (D is themid point)

So, BD = EF

also,

BF and DE are paralleland equal to each other.

, the pair oppositesides are equal in length and parallel to each other.

BDEF is aparallelogram.

(ii) Proceeding fromthe result of (i),

BDEF, DCEF, AFDE are parallelograms.

Diagonal of aparallelogram divides it into two triangles of equal area.

ar(ΔBFD) = ar(ΔDEF)(For parallelogram BDEF) — (i)

also,

ar(ΔAFE) = ar(ΔDEF)(For parallelogram DCEF) — (ii)

ar(ΔCDE) = ar(ΔDEF)(For parallelogram AFDE) — (iii)

From (i), (ii) and(iii)

ar(ΔBFD) = ar(ΔAFE) =ar(ΔCDE) = ar(ΔDEF)

 ar(ΔBFD)+ar(ΔAFE) +ar(ΔCDE) +ar(ΔDEF) = ar(ΔABC)

4 ar(ΔDEF) =ar(ΔABC)

 ar(DEF) = ¼ar(ABC)

(iii) Area(parallelogram BDEF) = ar(ΔDEF) +ar(ΔBDE)

 ar(parallelogramBDEF) = ar(ΔDEF) +ar(ΔDEF)

 ar(parallelogramBDEF) = 2× ar(ΔDEF)

 ar(parallelogramBDEF) = 2× ¼ ar(ΔABC)

 ar(parallelogramBDEF) = ½ ar(ΔABC)

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×