Question -
Answer -
दिया है : दी गई आकृति में ∆DRC, ∆DPC, ∆BPD और ∆ARC इस प्रकार हैं कि
ar (DRC) = ar (DPC) और ar (BDP) = ar (ARC)
सिद्ध करना है : चतुर्भुज ABCD और चतुर्भुज DCPR समलम्ब हैं।
उपपत्ति : ∆DRC और ∆DPC में ज्ञात है कि ar (DRC) = ar (DPC) और दोनों त्रिभुजों का उभयनिष्ठ आधार DC है।
∆DRC और ∆DPC एक ही समान्तर रेखाओं के बीच स्थित हैं।
DC || RP …(1)
अतः चतुर्भुज DCPR एक समलम्ब है।
ar (BDP) = ar (ARC)
ar (BDC) + ar (DPC) = ar (DRC) + ar (ADC)
परन्तु ar (DPC) = ar (DRC) (दिया है)
घटाने पर, ar (BDC) = ar (ADC)
∆BDC और ∆ADC के क्षेत्रफल बराबर हैं और उनका उभयनिष्ठ आधार DC है।
तब ∆BDC और ∆ADC एक ही समान्तर रेखाओं के बीच स्थित हैं।
AB || DC …(2)
अतः चतुर्भुज ABCD का एक समलम्ब है। तब चतुर्भुज ABCD और चतुर्भुज DCPR दोनों ही समलम्ब हैं।
Proved.