MENU
Question -

Prove that:
4 cos x cos (╧А/3 + x) cos (╧А/3 тАУ x) = cos 3x



Answer -

Let us consider LHS:

4 cos x cos (╧А/3 + x) cos (╧А/3 тАУ x) = 2 cos x (2 cos(╧А/3 + x) cos (╧А/3 тАУ x))

By using the formula,

2 cos A cos B = cos (A + B) + cos (A тАУ B)

2 cos x (2 cos (╧А/3+x) cos (╧А/3 тАУ x)) = 2 cos x (cos(╧А/3+x + ╧А/3-x) + cos (╧А/3+x тАУ ╧А/3+ x))

= 2 cos x (cos (2╧А/3) + cos (2x))

= 2 cos x {cos 120┬░ + cos 2x}

= 2 cos x {cos (180┬░ тАУ 60┬░) + cos 2x}

= 2 cos x (cos 2x тАУ cos 60┬░) (since, {cos (180┬░ тАУ A) =тАУ cos A})

= 2 cos 2x cos x тАУ 2 cos x cos 60┬░

= (cos (x + 2x) + cos (2x тАУ x)) тАУ (2cos x)/2

= cos 3x + cos x тАУ cos x

= cos 3x

= RHS

Hence Proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×