MENU
Question -

एक समान्तर चतुर्भुज ABCD में E और F क्रमशः भुजाओं AB और CD के मध्य-बिन्दु हैं। दर्शाइए कि रेखाखण्ड AF और CE विकर्ण BD को समत्रिभाजित करते हैं।



Answer -

दिया है : ABCD एक समान्तर चतुर्भुज है। बिन्दु E और F क्रमश: उसकी भुजाओं AB तथा CD के मध्य-बिन्दु हैं।
उसका विकर्ण BD, रेखाखण्डों AF तथा CE से क्रमशः बिन्दुओं P और Q पर विभक्त होता है।
सिद्ध करना है : BD को AF और CE तीन बराबर भागों में बाँटते हैं
अर्थात् DP = PQ = QB
उपपत्ति : ABCD एक समान्तर चतुर्भुज है।
AB || CD तथा AB = CD
और E तथा F क्रमश: AB और CD के मध्य-बिन्दु हैं।
AE || CF और AE = CF
AECF एक समान्तर चतुर्भुज है।
AF || CE ……(1)
AP|| EQ …(2)
PF || CQ …(3)
ΔDQC में, बिन्दु F, भुजा CD का मध्य-बिन्दु है। (ज्ञात है।)
और PF || CQ (समीकरण (3) से)
P, DQ का मध्य-बिन्दु है।
DP = PQ …(4)
पुनः ΔABP में, बिन्दु E भुजा AB का मध्य-बिन्दु है
और EQ || AP (समीकरण (2) से)
Q, BP का मध्य-बिन्दु है। QB = PQ …(5)
समीकरण (4) और (5) से, DP = PQ = QB
अतः रेखाखण्ड AF और CE, विकर्ण BD को तीन बराबर भागों में विभक्त करते हैं।
Proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×