Question -
Answer -
दिया है : चतुर्भुज ABCD एक आयत है जिसकी भुजाओं AB, BC, CD और DA के मध्य-बिन्दु क्रमशः P, Q, R और S हैं।
रेखाखण्ड PG, QR, RS और SP एक चतुर्भुज PQRS बनाते हैं।
सिद्ध करना है : चतुर्भुज PQRS एक समचतुर्भुज है।
उपपत्ति: ΔAPS और ΔDRS में,
AS = DS (S, AD का मध्य-बिन्दु है)।
∠A = ∠D (आयत के अन्त:कोण)
AP = DR (P, AB का तथा R, CD का मध्य बिन्दु है तथा AB = CD)
ΔAPS = ΔDRS (S.A.S. से)
SP = SR (C.P.C.T.) …(1)
ΔAPS और ΔBPQ में,
AP = BP (P, AB का मध्य-बिन्दु है)
∠A = ∠B (आयत के अन्त:कोण)
AS = BQ (AD = BC और S तथा Q इनके क्रमश: मध्य-बिन्दु हैं)
ΔAPS = ΔBPQ (S.A.S. से)
SP = QP (C.P.C.T.) …(2)
ΔAPS और ΔCRQ में,
AP = CR (AP =
AB =
CD = RC) (प्रत्येक समकोण) ∠A = ∠C
AS = CQ ( AS =
AD =
BC = QC) ΔAPS = ΔCRQ (S.A.S. से)
SP = QR (C.P.C.T.) …(3)
समीकरण (1), (2) और (3) से,
SP = RS = PQ = QR
PQRS एक समचतुर्भुज है।
Proved.