Question -
Answer -
दिया है। एक ही आधार BC पर दो समद्विबाहु त्रिभुज, ∆ABC और ∆DBC ऐसे स्थित हैं कि A और D, BC के एक ही ओर हैं।
AD को बढ़ाने पर यह BC को P पर काटती है।
सिद्ध करना है :
(i) ∆ABD = ∆ACD
(ii) ∆ABP = ∆ACP
(iii) AP, ∠A और ∠D दोनों को समद्विभाजित करता है।
(iv) AP, रेखाखण्ड BC का लम्ब समद्विभाजक है।
उपपत्ति : ∆ABC समद्विबाहु है जिसको आधार BC है।
AB = AC
और ∆DBC समद्विबाहु है जिसका आधार BC है।
BD = CD
(i) ∆ABD और ∆ACD में,
AB = AC [समीकरण (1) से]
BD = CD [समीकरण (2) से ]
AD = AD (उभयनिष्ठ भुजा से)
∆ABD = ∆ACD (S.S.S. से)
(ii) ∆ABD = ∆ACD
∠BAD = ∠CAD
अर्थात् AD, ∠A का समद्विभाजक है। (C.P.C.T.)
तबे AD को आगे बढ़ाने पर AP भी ∠A का समद्विभाजक होगा।
अब ∆ABP और ∆ACP में,
AB = AC [समीकरण (1) से]
∠BAP = ∠CAP ( AP, ∠A का समद्विभाजक है।)
AP = AP (उभयनिष्ठ भुजा)
∆ABP = ∆ACP (S.A.S. से)
(iii) ∆ABP = ∆ACP के ∠BDP = ∠CDP (C.P.C.T.)
DP, ∠D का समद्विभाजक है।
AP, ∠D का समद्विभाजक है। और हम अभी सिद्ध कर चुके हैं कि AP, ∠A का समद्विभाजक है।
तब, AP, ∠A और ∠D दोनों को समद्विभाजित करता है।
(iv) अभी हमने सिद्ध किया है कि ∆ABP = ∆CP
∠APB = ∠APC
तथा BP = CP (C.P.C.T.)
अब BP = CP
AP, भुजा BC का समद्विभाजक है।
∠ APB + ∠ APC = 180° और ∠APB = ∠APC (रेखीय युग्म)
तब हल करने पर,
∠APB = ∠APC = 90°
AP, BC पर लम्ब है।
AP, BC पर लम्ब भी है और AP, BC का समद्विभाजक भी है।
अतः AP रेखाखण्ड BC का लम्ब समद्विभाजक है।
Proved.