MENU
Question -

AD एक समद्विबाहु त्रिभुज ABC का शीर्षलम्ब है, जिसमें AB = AC है। दर्शाइए कि
(i) AD, रेखाखण्ड BC को समद्विभाजित करता है।
(ii) AD, ∠A को समद्विभाजित करता है।



Answer -

दिया है : ABC एक समद्विबाहु त्रिभुज है जिसमें AB = AC है।
त्रिभुज के शीर्ष A से BC पर AD लम्ब डाला गया है जिससे AD शीर्षलम्ब है।
सिद्ध करना है :
(i) AD, रेखाखण्ड BC को समद्विभाजित करता है।
(ii) AD, ∠A को समद्विभाजित करता है।
उपपत्ति : AD, ∆ABC का शीर्षलम्ब है।
AD ⊥ BC के ∠ADB = 90°
और ∠ADC = 90°
AB, ∆ABD को और AC, ∆ACD का कर्ण है।
तब समकोण त्रिभुज ABD और समकोण त्रिभुज ACD में, ∠ADB = ∠ADC (प्रत्येक 90°)
AB = AC (दिया है)
AD = AD (उभयनिष्ठ भुजा)
∆ABD = ∆ACD (R.H.S.)
(i) ∆BD = ∆ACD
BD = CD (C.P.C.T.)
D, BC का मध्य-बिन्दु है।
अत: AD, रेखाखण्ड BC को समद्विभाजित करता है।
(ii) ∆ABD = ∆ACD
∠BAD = ∠CAD (C.P.C.T.)
अत: AD, ∠A को समद्विभाजित करता है।
Proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×