Question -
Answer -
PERMUTATIONS शब्द में कुल 12 अक्षर हैं जिनमें T – 2 है, शेष सब भिन्न हैं।
(i) P और 9 के स्थान स्थिर कर दिए (UPBoardSolutions.com) गए हैं।
शेष अ६ से बने शब्दों की संख्या = 10!/2! = 1814400.
(ii) सभी स्वरों को एक साथ कर दिया गया है।
(EUAIO)PRMTTNS जिनमें 2T हैं।
उन शब्दों की संख्या जब स्वर एक साथ है।
= 8!/2! x 5!
= (40320 x 120) /2
= 2419200.
(iii) P तथा 5 के बीच चार अक्षर होने चाहिए।
मान लीजिए 12 अक्षरों के स्थानों का नाम 1, 2, 3, …… 12 रख दिया है।
1 2 3 4 5 6 7 8 9 10 11 12
इस प्रकार P को स्थान 1, 2, 3, 4, 5, 6, 7 पर रखा जा सकता है तो S को स्थान 6, 7, 8, 9, 10, 11, 12 पर रखा जा सकता है।
P और S को 7 स्थानों पर रखा जा सकता है।
इसी प्रकार S और P को 7 स्थानों पर रखा जा सकता है।
P और S या S और P को 7 + 7 = 14 तरीकों से रखा जा सकता
शेष10!/2! अक्षरों को 10 तरीकों से व्यवस्थित किया जा सकता है।
उन शब्दों की संख्या जब P और S के बीच में 4 अक्षर हों
= 10!/2! x 14 = 10! x 7 = 25401600.