MENU
Question -

The perpendicularfrom A on side BC of a Δ ABC intersects BC at D such that DB =3CD (see Figure). Prove that 2AB2 = 2AC2 +BC2.



Answer -

Given, the perpendicular from A on side BC ofa Δ ABC intersects BC at D such that;

DB = 3CD.

In Δ ABC,

AD BC and BD = 3CD

In right angle triangle, ADB and ADC, byPythagoras theorem,

AB2 = AD2 +BD2 ……………………….(i)

AC2 = AD2 +DC2 ……………………………..(ii) 

Subtracting equation (ii) from equation (i), we get

AB2 – AC2 = BD2 –DC2

                  = 9CD2 – CD2 [Since,BD = 3CD]                

                   = 8CD2 

= 8(BC/4)[Since, BC =DB + CD = 3CD + CD = 4CD]

Therefore, AB2 – AC2 = BC2/2

2(AB2 – AC2) = BC2

2AB2 – 2AC2 = BC2

2AB2 = 2AC2 + BC2.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×