MENU
Question -

The perpendicularfrom A on side BC of a┬а╬Ф ABC intersects BC at D such that DB =3CD┬а(see Figure). Prove that 2AB2┬а= 2AC2┬а+BC2.



Answer -

Given, the perpendicular from A on side BC ofa┬а╬Ф ABC intersects BC at D such that;

DB = 3CD.

In ╬Ф ABC,

AD тКеBC and BD = 3CD

In right angle triangle, ADB and ADC, byPythagoras theorem,

AB2┬а=┬аAD2┬а+BD2┬атАжтАжтАжтАжтАжтАжтАжтАжтАж.(i)

AC2┬а=┬аAD2┬а+DC2┬атАжтАжтАжтАжтАжтАжтАжтАжтАжтАжтАж..(ii)┬а

Subtracting equation┬а(ii)┬аfrom equation┬а(i), we get

AB2┬атАУ AC2┬а= BD2┬атАУDC2

┬а ┬а ┬а ┬а ┬а ┬а┬а ┬а ┬а ┬а= 9CD2┬атАУ CD2┬а[Since,BD = 3CD]┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а┬а

┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а ┬а= 8CD2┬а

= 8(BC/4)2┬а[Since, BC =DB┬а+ CD = 3CD┬а+ CD = 4CD]

Therefore, AB2┬атАУ AC2┬а= BC2/2

тЗТ 2(AB2┬атАУ AC2) = BC2

тЗТ 2AB2┬атАУ 2AC2┬а= BC2

тИ┤ 2AB2┬а= 2AC2┬а+ BC2.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×