MENU
Question -

Prove that the sumof the squares of the sides of rhombus is equal to the sum of the squares ofits diagonals.



Answer -

Given, ABCDis a rhombus whose diagonals AC and BD intersect at O.

We have to prove, as per the question, 

AB+ BC+ CD2 +AD= AC+ BD2

Since, the diagonals of a rhombus bisect eachother at right angles.

Therefore, AO = CO and BO = DO

In ΔAOB,

AOB = 90°

AB2 = AO+ BO…………………….. (i) [By Pythagoras theorem]

Similarly, 

AD2 = AO+ DO…………………….. (ii)

DC2 = DO+ CO…………………….. (iii)

BC2 = CO+ BO…………………….. (iv)

Adding equations (i) + (ii) + (iii) + (iv), we get,

AB+ AD+ DC+ BC2 =2(AO+ BO+ DO+ CO2)

                                      = 4AO+ 4BO[Since, AO =CO and BO =DO]

                                       = (2AO)+(2BO)2 = AC+ BD2

AB+ AD+ DC+ BC2 =AC+ BD2

Hence, proved.


Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×