MENU
Question -

Solve 5x – 3 < 7, when
(i) x is an integer
(ii) x is a real number



Answer -

(i) Given that, 5x – 3 < 7
Now by adding 3 both side we get,
5x – 3 + 3 < 7 + 3
Above inequality becomes
5x < 10
Again by dividing both sides by 5 we get,
5x/5 < 10/5
x < 2
When x is an integer then
It is clear that that the integer number less than 2 are…, -2, -1, 0, 1.
Thus, solution of 5x – 3 < 7 is …,-2, -1, 0, 1, when x is an integer.
Therefore the solution set is {…, -2, -1, 0, 1}
(ii) Given that, 5x – 3 < 7
Now by adding 3 both side we get,
5x – 3 + 3 < 7 + 3
Above inequality becomes
5x < 10
Again by dividing both sides by 5 we get,
5x/5 < 10/5
x < 2
When x is a real number then
It is clear that the solutions of 5x – 3 < 7 will be given by x < 2 which states that all the real numbers that are less than 2.
Hence the solution set is x ∈ (-∞, 2)

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×