MENU
Question -

Find the maximum value of 2x3 −24x + 107 in the interval [1, 3]. Find the maximum value of thesame function in [−3, −1].



Answer -

Let f(x) = 2x3 −24x + 107.

We first consider the interval [1, 3].

Then, we evaluate the value of f atthe critical point x = 2 [1, 3] andat the end points of the interval [1, 3].

f(2) = 2(8)− 24(2) + 107 = 16 − 48 + 107 = 75

f(1) = 2(1)− 24(1) + 107 = 2 − 24 + 107 = 85

f(3) = 2(27)− 24(3) + 107 = 54 − 72 + 107 = 89

Hence, the absolute maximum value of f(x)in the interval [1, 3] is 89 occurring at x = 3.

Next, we consider the interval [−3, −1].

Evaluate the value of f atthe critical point x = −2 [−3, −1]and at the end points of the interval [1, 3].

f(−3) = 2(−27) − 24(−3) + 107 = −54 + 72 + 107 = 125

f(−1) =2(−1) − 24 (−1) + 107 = −2 + 24 + 107 = 129

f(−2) =2(−8) − 24 (−2) + 107 = −16 + 48 + 107 = 139

Hence, the absolute maximum value of f(x)in the interval [−3, −1] is 139 occurring at x = −2.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×