MENU
Question -

Find the local maxima and local minima, if any, of thefollowing functions. Find also the local maximum and the local minimum values,as the case may be:

(i). f(x)= x2 (ii). g(x)= x3 −3x (iii). h(x) =sinx +cosx, 0< (iv). f(x) =sinx − cos x, 0 < x <2π
(v). f(x) = x3 −6x2 +9x +15
(vi). 
(vii). 
(viii). 



Answer -

(i) f(x)= x2

Thus, x =0 is the only critical point which could possibly be the point of local maximaor local minima of f.

We have, which is positive.

Therefore, by second derivative test, x =0 is a point of local minima and local minimum value of f at x =0 is f(0) = 0.

(ii) g(x)= x3 −3x

By second derivative test, = 1 is a point of local minima and local minimum valueof g at x = 1 is g(1)= 13 − 3 = 1 − 3 = −2. However,

x = −1 is a point of local maxima and local maximumvalue of g at

x = −1 is g(1) = (−1)3 −3 (− 1) = − 1 + 3 = 2.

(iii) h(x) =sinx +cosx, 0< x <

Therefore, by secondderivative test, is a point of localmaxima and the local maximum value of h at  is 

Therefore, by secondderivative test, is a point of localmaxima and the local maximum value of at 

is

 However, is a point of localminima and the local minimum value of f atis 


(v) f(x)= x3 −6x2 +9x + 15

Therefore, by second derivative test, x =1 is a point of local maxima and the local maximum value of f at = 1 is f(1) = 1 − 6 + 9 + 15 =19. However, x = 3 is a point of local minima and the local minimumvalue of at x = 3 is f(3) = 27 − 54 + 27 + 15 = 15.

(vi) 

Since x >0, we take x = 2.

Therefore, by secondderivative test, x = 2 is a point of local minima and the localminimum value of g at x =2 is g(2) =

(vii) 

Now, for values closeto x = 0 and to the left of 0,Also, for values closeto x = 0 and to the right of 0,

Therefore, by firstderivative test, x = 0 is a point of local maxima and the localmaximum value of

(viii) 

Therefore, by secondderivative test,is a point of local maximaand the local maximum value of f at  is


Comment(S)

Show all Coment

Leave a Comment

×