MENU
Question -

Using differentials, find the approximatevalue of each of the following up to 3 places of decimal



Answer -

(i) 

Consider. Let x = 25 and Δx =0.3.

Then,

Now, dy is approximatelyequal to Δy and is given by,

Hence, the approximatevalue ofis 0.03 + 5 = 5.03.

(ii) 
Consider. Let x = 49 and Δx =0.5.

Then,

Now, dy is approximatelyequal to Δy and is given by,

Hence, the approximatevalue ofis 7 + 0.035 = 7.035.

(iii) 
Consider. Let = 1 and Δx =− 0.4.

Then,

Now, dy is approximatelyequal to Δy and is given by,

Hence, the approximatevalue ofis 1 + (−0.2) = 1 − 0.2 = 0.8.

(iv) 
Consider. Let x = 0.008 and Δx =0.001.

Then,

Now, dy is approximatelyequal to Δy and is given by,

Hence, the approximatevalue ofis 0.2 + 0.008 = 0.208.

(v) 
Consider. Let x = 1 and Δx =−0.001.

Then,

Now, dy is approximatelyequal to Δy and is given by,

Hence, the approximatevalue ofis 1 + (−0.0001) = 0.9999.

(vi) 
Consider. Let x = 16 and Δx =−1.

Then,

Now, dy is approximatelyequal to Δy and is given by,

Hence, the approximatevalue ofis 2 + (−0.03125) = 1.96875.

(vii) 
Consider. Let x = 27 and Δx =−1.

Then,

Now, dy is approximatelyequal to Δy and is given by,

Hence, the approximatevalue ofis 3 + (−0.0370) = 2.9629.

(viii) 
Consider. Let = 256 and Δx =−1.

Then,

Now, dy is approximatelyequal to Δy and is given by,

Hence, the approximatevalue ofis 4 + (−0.0039) = 3.9961.

(ix) 
Consider. Let x = 81 and Δx =1.

Then,

Now, dy is approximatelyequal to Δy and is given by,

Hence, the approximatevalue ofis 3 + 0.009 = 3.009.

(x) 
Consider. Let x = 400 and Δx =1.

Then,

Now, dy is approximatelyequal to Δy and is given by,

Hence, the approximatevalue ofis 20 + 0.025 = 20.025.


Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×