MENU
Question -

Find the intervals in which the following functions arestrictly increasing or decreasing:

(a) x2 +2x − 5 (b) 10 − 6x − 2x2

(c) −2x3 −9x2 − 12x + 1 (d) 6 − 9x − x2

(e) (x + 1)3 (x −3)3



Answer -

(a) We have,

Now,

 x = −1

Point x = −1 divides the real lineinto two disjoint intervals i.e., 
In interval
f isstrictly decreasing in interval

Thus, f is strictlydecreasing for x < −1.

In interval
 f is strictly increasing in interval

Thus, f is strictlyincreasing for x > −1.

(b) We have,

f(x)= 10 − 6x − 2x2

The point divides the real line intotwo disjoint intervals i.e.,

In interval i.e., when

f'(x)=-6-4x>0.

 f is strictly increasing for 

In interval i.e., when

 f is strictly decreasing for 

(c) We have,

f(x)= −2x3 − 9x2 − 12x +1

Points x =−1 and x = −2 divide the real line into three disjoint intervalsi.e.,

In intervals i.e., when x < −2and x > −1,

 f is strictly decreasing for x <−2 and x > −1.

Now, in interval (−2, −1) i.e., when −2 < x <−1, 

 f is strictly increasing for 

(d) We have,

The pointdivides the real line intotwo disjoint intervals i.e., 

In interval i.e., for

 f is strictly increasing for

In interval i.e., for

 f is strictly decreasing for

(e) We have,

f(x)= (x + 1)3 (x − 3)3

The points x =−1, x = 1, and x = 3 divide the real lineinto four disjoint intervals i.e.,

, (−1, 1), (1, 3), and

In intervalsand (−1, 1), 

 f is strictly decreasing inintervalsand (−1, 1).

In intervals (1, 3) and

 f is strictly increasing inintervals (1, 3) and

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×