Chapter 6 रैखिक असमिकाएँ (Linear Inequalities) Ex 6.1 Solutions
Question - 21 : - रवि ने पहली दो एकक परीक्षा में 70 और 75 अंक प्राप्त किए हैं। वह न्यूनतम अंक ज्ञात कीजिए, जिसे वह तीसरी एकक परीक्षा में पाकर 60 अंक का न्यूनतम औसत प्राप्त कर सके।
Answer - 21 : - मान लीजिए तीसरे एकक परीक्षा में x अंक प्राप्त किए।
Question - 22 : - किसी पाठ्यक्रम में ग्रेड A पाने के लिए एक व्यक्ति को सभी पाँच परीक्षाओं (प्रत्येक 100 अंकों में से) में 90 अंक या अधिक अंक का औसत प्राप्त करना चाहिए यदि सुनीता के प्रथम चार परीक्षाओं के प्राप्तांक 87, 92, 94 और 95 हों तो वह न्यूनतम अंक ज्ञात कीजिए जिसे पांचवीं परीक्षा में प्राप्त करके सुनीता उस पाठ्यक्रम में ग्रेड A पाएगी।
Answer - 22 : -
Question - 23 : - 10 से कम क्रमागत विषम संख्याओं के ऐसे युग्म ज्ञात कीजिए जिनके योगफल 11 से अधिक हों।
Answer - 23 : -
मान लीजिए x और x + 2 दो विषम परिमेय संख्याएँ हैं।
x तथा x + 2 दोनों ही 10 से कम हैं।
⇒ x < 10 और x + 2 < 10 या x < 8 दोनों का योगं 11 से अधिक है। x + (x + 2) > 11
2x + 2 > 11 या 2x > 11 – 2
2x > 9 या x > 9/2 x > 4(1/2)
अर्थात् यदि x = 5 हो, तब दूसरी संख्या = x + 2 = 7
इसी प्रकार यदि x = 7, तो x + 2 = 9
दूसरा युग्म (7, 9)
x = 9 नहीं हो सकता क्योंकि x + 2 = 11 > 10
अत: वांछित युग्म है (5, 7), 7, 9).
Question - 24 : - क्रमागत सर्म संख्याओं के ऐसे युग्म ज्ञात कीजिए जिनमें से प्रत्येक 5 से बड़े हों, तथा उनका योगफल 23 से कम हो।
Answer - 24 : -
मान लीजिए x और x + 2 दो सम संख्याएँ हैं।
x और x + 2 दोनों ही 5 से बड़ी है।
⇒ x > 5
x + (x + 2) < 23
2x + 2 < 23
2x < 23 – 2 = 21
2x < 21 या x < 21/2
यदि x = 10, x + 2 = 12 ⇒ x + (x + 2) < 23
इसी प्रकार (6, 8), (8, 10) युग्म भी दी हुई शर्त पूरी करते हैं। वांछित युग्म (6, 8), (8, 10), (10, 12).
Question - 25 : - एक त्रिभुज की सबसे बड़ी भुजा सबसे छोटी भुजा की तीन गुनी है तथा त्रिभुज की तीसरी भुजा सबसे बड़ी भुजा से 2 सेमी कम है। तीसरी भुजा की न्यूनतम लंबाई ज्ञात कीजिए जबकि त्रिभुज का परिमाप न्यूनतम 61 सेमी है।
Answer - 25 : -
मान लीजिए त्रिभुज की सबसे छोटी भुजा = x सेमी
सबसे बड़ी भुजा = 3x सेमी
तीसरी भुजा = 3x – 2 सेमी
प्रश्नानुसार
x + 3x + (3x – 2) ≥ 61
7x – 2 ≥ 61
7x ≥ 61 + 2 = 63
x ≥ 9
सबसे छोटी भुजा 9 सेमी है।
Question - 26 : - एक व्यक्ति 91 सेमी लंबे बोर्ड में से तीन लंबाईयाँ काटना चाहता है। दूसरी लंबाई सबसे छोटी लंबाई से 3 सेमी अधिक और तीसरी लंबाई सबसे छोटी लंबाई की दूनी है। सबसे छोटे बोर्ड की संभावित लंबाई क्या है, यदि तीसरा टुकड़ा दूसरे टुकड़े से कम से कम 5 सेमी अधिक लंबा हो ?
Answer - 26 : -
मान लीजिए कटे हुए सबसे छोटे बोर्ड की लंबाई = x सेमी
दूसरे कटे हुए बोर्ड की लम्बाई = x + 3
तीसरे कटे हुए बोर्ड की लम्बाई = 2x सेमी
दिया है कि
x + (x + 3) + 2x ≤ 91
4x + 3 ≤ 91
4x ≤ 91 – 3 = 88
4x ≤ 88
x ≤ 22 ……(1)
यह भी दिया गया है कि 2x ≥ (x + 3) + 5
2x ≥ x + 8
x ≥ 8 ……(2)
सबसे छोटे बोर्ड की लम्बाई कम से कम 8 सेमी हो और अधिक से अधिक 22 सेमी हो।