Question -
Answer -
ΔPQR में,
∠PQR + ∠PRQ + ∠QPR = 180°
तथा ΔTQR में,
∠TQR + ∠QRT + ∠QTR = 180° (त्रिभुज के अन्त:कोणों का योग 180° होता है।)
∠TQR + ∠QRT + ∠QTR = ∠PQR + ∠PRQ + ∠QPR
∠TQR + (∠PRQ + ∠PRT) + ∠QTR = ∠PQR + ∠PRQ + ∠QPR [∴ ∠QRT = ∠PRQ + ∠PRT]
∠TQR + ∠PRQ + ∠PRT + ∠QTR = ∠PQR + ∠PRQ + ∠QPR
∠TQR + ∠PRT + ∠QTR = ∠PQR + ∠QPR …….(1)
QT, ∠PQR का समद्विभाजक है।
∠TQR = ∠PQR ⇒ ∠PQR = 2 ∠TQR ……..(2)
समीकरण (1) वे समीकरण (2) से,
∠TQR + ∠PRT + ∠QTR = 2 ∠TQR + ∠QPR
∠PRT + ∠QTR = ∠TQR + ∠QPR
RT, ∠PRS का समद्विभाजक है।
∠PRT = ∠PRS
और ∠PRS, ΔPQR का बहिष्कोण है।
∠PRS = ∠PQR + ∠QPR (किसी त्रिभुज का एक बहिष्कोण उसके अन्तः अभिमुख कोणों के योगफल के बराबर होता है।)
∠PRS = 2 ∠TQR + ∠QPR [समीकरण (2) से] …(4)
∠PRT = ∠PRS = (2 ∠TQR + ∠QPR) [समीकरण (4) से
∠PRT = ∠TQR + ∠QPR …(5)
समीकरण (3) में से समीकरण (5) को घटाने पर,
∠QTR = ∠QPR – ∠QPR
∠QTR = ∠QPR
Proved.