MENU
Question -

Find the values of the following trigonometric ratios:
(i) sin 5π/3
(ii) sin 17π
(iii) tan 11π/6
(iv) cos (-25π/4)
(v) tan 7π/4
(vi) sin 17π/6
(vii) cos 19π/6
(viii) sin (-11π/6)
(ix) cosec (-20π/3)
(x) tan (-13π/4)
(xi) cos 19π/4
(xii) sin 41π/4
(xiii) cos 39π/4
(xiv) sin 151π/6



Answer -

(i) sin 5π/3

5π/3 = (5π/3 × 180)o

= 300o

= (90×3 + 30)o

Since, 300o lies in IV quadrant inwhich sine function is negative.

sin 5π/3 = sin (300)o

= sin (90×3 + 30)o

= – cos 30o

= – √3/2

(ii) sin 17π

Sin 17π = sin 3060o

= sin (90×34 + 0)o

Since, 3060o lies in the negativedirection of x-axis i.e., on boundary line of II and III quadrants.

Sin 17π = sin (90×34 + 0)o

= – sin 0o

= 0

(iii) tan 11π/6

tan 11π/6 = (11/6 × 180)o

= 330o

Since, 330o lies in the IV quadrant inwhich tangent function is negative.

tan 11π/6 = tan (300)o

= tan (90×3 + 60)o

= – cot 60o

= – 1/√3

(iv) cos (-25π/4)

cos (-25π/4) = cos (-1125)o

= cos (1125)o

Since, 1125o lies in the I quadrant inwhich cosine function is positive.

cos (1125)o = cos (90×12 + 45)o

= cos 45o

= 1/√2

(v) tan 7π/4

tan 7π/4 = tan 315o

= tan (90×3 + 45)o

Since, 315o lies in the IV quadrant inwhich tangent function is negative.

tan 315o = tan (90×3 + 45)o

= – cot 45o

= -1

(vi) sin 17π/6

sin 17π/6 = sin 510o

= sin (90×5 + 60)o

Since, 510o lies in the II quadrant inwhich sine function is positive.

sin 510o = sin (90×5 + 60)o

= cos 60o

= 1/2

(vii) cos 19π/6

cos 19π/6 = cos 570o

= cos (90×6 + 30)o

Since, 570o lies in III quadrant inwhich cosine function is negative.

cos 570o = cos (90×6 + 30)o

= – cos 30o

= – √3/2

(viii) sin (-11π/6)

sin (-11π/6) = sin (-330o)

= – sin (90×3 + 60)o

Since, 330o lies in the IV quadrant inwhich the sine function is negative.

sin (-330o) = – sin (90×3 + 60)o

= – (-cos 60o)

= – (-1/2)

= 1/2

(ix) cosec (-20π/3)

cosec (-20π/3) = cosec (-1200)o

= – cosec (1200)o

= – cosec (90×13 + 30)o

Since, 1200o lies in the II quadrantin which cosec function is positive.

cosec (-1200)o = – cosec (90×13 + 30)o

= – sec 30o

= -2/√3

(x) tan (-13π/4)

tan (-13π/4) = tan (-585)o

= – tan (90×6 + 45)o

Since, 585o lies in the III quadrantin which the tangent function is positive.

tan (-585)o = – tan (90×6 + 45)o

= – tan 45o

= -1

(xi) cos 19π/4

cos 19π/4 = cos 855o

= cos (90×9 + 45)o

Since, 855o lies in the II quadrant inwhich the cosine function is negative.

cos 855o = cos (90×9 + 45)o

= – sin 45o

= – 1/√2

(xii) sin 41π/4

sin 41π/4 = sin 1845o

= sin (90×20 + 45)o

Since, 1845o lies in the I quadrant inwhich the sine function is positive.

sin 1845o = sin (90×20 + 45)o

= sin 45o

= 1/√2

(xiii) cos 39π/4

cos 39π/4 = cos 1755o

= cos (90×19 + 45)o

Since, 1755o lies in the IV quadrantin which the cosine function is positive.

cos 1755o = cos (90×19 + 45)o

= sin 45o

= 1/√2

(xiv) sin 151π/6

sin 151π/6 = sin 4530o

= sin (90×50 + 30)o

Since, 4530o lies in the III quadrantin which the sine function is negative.

sin 4530o = sin (90×50 + 30)o

= – sin 30o

= -1/2

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×