MENU
Question -

sin6┬аx + cos6┬аx= 1 тАУ 3 sin2┬аx cos2┬аx



Answer -

Let us consider LHS: sin6┬аx+ cos6┬аx

(sin2┬аx)┬а3┬а+(cos2┬аx)┬а3

By using the formula, a3┬а+ b3┬а=(a + b) (a2┬а+ b2┬атАУ ab)

(sin2┬аx + cos2┬аx)[(sin2┬аx)┬а2┬а+(cos2┬аx)┬а2┬атАУsin2┬аx cos2┬аx]

By using the formula, sin2┬аx + cos2┬аx= 1 and a2┬а+ b2┬а= (a + b)┬а2┬атАУ2ab

1 ├Ч [(sin2┬аx + cos2┬аx)┬а2┬атАУ 2sin2┬аxcos2┬аx тАУ sin2┬аx cos2┬аx

12┬атАУ3sin2┬аx cos2┬аx

1 тАУ 3sin2┬аx cos2┬аx

= RHS

тИ┤LHS = RHS

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×