MENU
Question -

(sec x sec y + tan x tan y)2 тАУ (sec x tan y + tan x sec y)2 = 1



Answer -

Let us consider LHS:

(sec x sec y + tan x tan y)2┬атАУ (sec xtan y + tan x sec y)2

Expanding the above equation we get,

[(sec x secy)2┬а+ (tan x tan y)2┬а+ 2 (sec x sec y) (tan xtan y)] тАУ [(sec x tan y)2┬а+ (tan x sec y)2┬а+ 2(sec x tan y) (tan x sec y)] [sec2┬аx sec2┬аy +tan2┬аx tan2┬аy + 2 (sec x sec y) (tan x tan y)]тАУ [sec2┬аx tan2┬аy + tan2┬аx sec2┬аy+ 2 (sec2┬аx tan2┬аy) (tan x sec y)]

sec2┬аx sec2┬аy тАУ sec2┬аxtan2┬аy + tan2┬аx tan2┬аy тАУ tan2┬аxsec2┬аy

sec2┬аx (sec2┬аy тАУ tan2┬аy)+ tan2┬аx (tan2┬аy тАУ sec2┬аy)

sec2┬аx (sec2┬аy тАУ tan2┬аy)тАУ tan2┬аx (sec2┬аy тАУ tan2┬аy)

We know, sec2┬аx тАУ tan2┬аx= 1.

sec2┬аx ├Ч 1 тАУ tan2┬аx ├Ч1

sec2┬аx тАУ tan2┬аx

1 = RHS

тИ┤ LHS = RHS

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×