MENU
Question -

(sec x sec y + tan x tan y)2 тАУ (sec x tan y + tan x sec y)2 = 1



Answer -

Let us consider LHS:

(sec x sec y + tan x tan y)2 тАУ (sec xtan y + tan x sec y)2

Expanding the above equation we get,

[(sec x secy)2 + (tan x tan y)2 + 2 (sec x sec y) (tan xtan y)] тАУ [(sec x tan y)2 + (tan x sec y)2 + 2(sec x tan y) (tan x sec y)] [secx sec2 y +tanx tan2 y + 2 (sec x sec y) (tan x tan y)]тАУ [secx tan2 y + tanx sec2 y+ 2 (secx tan2 y) (tan x sec y)]

secx sec2 y тАУ secxtan2 y + tanx tan2 y тАУ tanxsec2 y

secx (sec2 y тАУ tan2 y)+ tanx (tan2 y тАУ sec2 y)

secx (sec2 y тАУ tan2 y)тАУ tanx (sec2 y тАУ tan2 y)

We know, secx тАУ tanx= 1.

secx ├Ч 1 тАУ tanx ├Ч1

secx тАУ tanx

1 = RHS

тИ┤ LHS = RHS

Hence proved.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
├Ч