MENU
Question -

Examine the following functions forcontinuity.

(a)                         (b)

(c)        (d) 



Answer -

(a) The given function is

It isevident that f is defined at every real number k andits value at k is k − 5.

It is also observedthat, 

Hence, f iscontinuous at every real number and therefore, it is a continuous function.


(b) The givenfunction is

Forany real number k ≠ 5, we obtain

Hence, f iscontinuous at every point in the domain of f and therefore, itis a continuous function.


(c) The givenfunction is

Forany real number c ≠ −5, we obtain

Hence, f iscontinuous at every point in the domain of f and therefore, itis a continuous function.


(d) The given function is 

Thisfunction f is defined at all points of the real line.

Let c bea point on a real line. Then, c < 5 or c =5 or c > 5

CaseI: c < 5

Then, (c)= 5 − c

Therefore, f iscontinuous at all real numbers less than 5.

CaseII : c = 5

Then, 

Therefore, iscontinuous at x = 5

Case III: c >5

Therefore, f iscontinuous at all real numbers greater than 5.

Hence, f iscontinuous at every real number and therefore, it is a continuous function.


Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×