MENU
Question -

Discuss thecontinuity of the cosine, cosecant, secant and cotangent functions,



Answer -

It isknown that if and are two continuousfunctions, then

Ithas to be proved first that g (x) = sin and h (x)= cos x are continuous functions.

Let (x)= sin x

It isevident that g (x) = sin x is definedfor every real number.

Let bea real number. Put x = c + h

If x

 c, then h

0

Therefore, g isa continuous function.

Let h (x)= cos x

It isevident that h (x) = cos x is definedfor every real number.

Let bea real number. Put x = c + h

If x ® c,then h ® 0

(c) =cos c

Therefore, h (x)= cos x is continuous function.

It can be concludedthat,

Therefore, cosecant is continuous except at np, Z

Therefore, secant is continuous except at 

Therefore,cotangent is continuous except at np, Î Z

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×