MENU
Question -

Find the values of k for each of the following quadratic equations, so that they have two equal roots.



Answer -

(i) 2x2 + kx +3 = 0
(ii) kx (x – 2) + 6 = 0


Solution

(i) 2x2 + kx +3 = 0

Comparing the given equation with ax2 + bx c =0, we get,

a = 2, b =k and c = 3

As we know, Discriminant = b2 –4ac

= (k)2 – 4(2) (3)

k2 – 24

For equal roots, we know,

Discriminant = 0

k2 – 24 = 0

k2 = 24

k = ±√24 = ±2√6


Solution

(ii) kx(x – 2) + 6 = 0

or kx2 – 2kx +6 = 0

Comparing the given equation with ax2 + bx c =0, we get

a = kb =– 2k and c = 6

We know, Discriminant = b2 –4ac

= ( – 2k)2 – 4 (k)(6)

= 4k2 – 24k

For equal roots, we know,

b2 – 4ac = 0

4k2 – 24k =0

4k (k – 6) = 0

Either 4k = 0 or k =6 = 0

k = 0 or k =6

However, if k = 0, then theequation will not have the terms ‘x2‘ and ‘x‘.

Therefore, if this equation has two equalroots, k should be 6 only.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×