MENU
Question -

Find the nature of the roots of the following quadratic equations. If the real roots exist, find them-



Answer -

(i) 2x2┬атАУ3x┬а+ 5 = 0
(ii) 3x2┬атАУ┬а4тИЪ3x┬а+ 4 = 0
(iii) 2x2┬атАУ┬а6x┬а+ 3 = 0

Solution

(i) Given,

2x2┬атАУ 3x┬а+ 5 = 0

Comparing the equation with┬аax2┬а+┬аbx┬а+┬аc┬а=0, we get

a┬а= 2,┬аb┬а=-3 and┬аc┬а= 5

We know, Discriminant =┬аb2┬атАУ4ac

=┬а(тАУ 3)2┬атАУ 4 (2) (5) = 9 тАУ 40

= тАУ 31

As you can see, b2┬атАУ 4ac <0

Therefore, no real root is possible for thegiven equation,┬а2x2┬атАУ 3x┬а+ 5 = 0.


Solution

(ii) 3x2┬атАУ 4тИЪ3x┬а+4 = 0

Comparing the equation with┬аax2┬а+┬аbx┬а+┬аc┬а=0, we get

a┬а= 3,┬аb┬а=┬а-4тИЪ3┬аand┬аc┬а=4

We know, Discriminant =┬аb2┬атАУ4ac

= (-4тИЪ3)2┬атАУ 4(3)(4)

= 48 тАУ 48 = 0

As┬аb2┬атАУ 4ac┬а=0,

Real roots exist for the given equation andthey are equal to each other.

Hence the roots will be тАУb/2a┬аand┬атАУb/2a.

тАУb/2a┬а= -(-4тИЪ3)/2├Ч3 = 4тИЪ3/6= 2тИЪ3/3 = 2/тИЪ3

Therefore, the roots are┬а2/тИЪ3┬аand2/тИЪ3.


Solution

(iii) 2x2┬атАУ┬а6x┬а+3 = 0

Comparing the equation with┬аax2┬а+┬аbx┬а+┬аc┬а=0, we get

a┬а= 2,┬аb┬а=-6,┬аc┬а= 3

As we know, Discriminant =┬аb2┬атАУ4ac

= (-6)2┬атАУ 4 (2) (3)

= 36 тАУ 24 = 12

As┬аb2┬атАУ 4ac┬а>0,

Therefore, there are distinct real roots existfor this equation, 2x2┬атАУ┬а6x┬а+ 3 = 0.

= (-(-6) ┬▒ тИЪ(-62-4(2)(3)) )/ 2(2)

= (6┬▒2тИЪ3 )/4

= (3┬▒тИЪ3)/2

Therefore the roots for the given equation are(3+тИЪ3)/2 and (3-тИЪ3)/2

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×