MENU
Question -

Check whether the following are quadratic equations:-



Answer -

(i) (x + 1)2 =2(x – 3)

(ii) x2 –2x = (–2) (3 – x)

(iii) (x – 2)(x + 1)= (x – 1)(x + 3)

(iv) (x – 3)(2x +1)= x(x + 5)

(v) (2x – 1)(x – 3)= (x + 5)(x – 1)

(vi) x2 +3x + 1 = (x – 2)2

(vii) (x + 2)3 =2x (x2 – 1)

(viii) x3 –4x2 – x + 1 = (x – 2)3


Solutions:


(i) Given,

(x + 1)2 = 2(x – 3)

By using the formula for (a+b)=a2+2ab+b2

 x2 + 2x + 1 = 2x – 6

 x2 + 7 = 0

Since the above equation is in the form of ax2 + bx + c =0.

Therefore, the given equationis quadratic equation.


(ii) Given, x2 – 2x = (–2) (3– x)

By using the formula for (a+b)=a2+2ab+b2

 x 2x = -6 + 2x

 x– 4x + 6 = 0

Since the above equation is in the form of ax2 + bx + c =0.

Therefore, the given equationis quadratic equation.


(iii) Given, (x – 2)(x + 1) = (x – 1)(x + 3)

By using the formula for (a+b)=a2+2ab+b2

 x– x – 2 = x+2x – 3

3x – 1 = 0

Since the above equation is not in the form ofax2 + bx + c = 0.

Therefore, the given equation is not aquadratic equation.

(iv) Given, (x – 3)(2x +1) = x(x + 5)

By using the formula for (a+b)2=a2+2ab+b2

2x– 5x – 3 = x+5x

 x– 10x – 3 = 0

Since the above equation is in the form of ax2 + bx + c =0.

Therefore, the given equationis quadratic equation.


(v) Given, (2x – 1)(x – 3) =(x + 5)(x – 1)

By using the formula for (a+b)2=a2+2ab+b2

2x– 7x + 3 = x+4x – 5

 x– 11x + 8 = 0

Since the above equation is in the form of ax2 + bx + c =0.

Therefore, the given equationis quadratic equation.


(vi) Given, x2 + 3x + 1 =(x – 2)2

By using the formula for (a+b)2=a2+2ab+b2

 x2 + 3x + 1 = x2 +4 – 4x

7x – 3 = 0

Since the above equation is not in the form ofax2 + bx + c = 0.

Therefore, the given equation is not aquadratic equation.


(vii) Given, (x + 2)3 =2x(x2 – 1)

By using the formula for (a+b)=a2+2ab+b2

 x3 + 8 + x2 +12x = 2x3 – 2x

 x3 + 14x – 6x2 – 8 =0

Since the above equation is not in the form ofax2 + bx + c = 0.

Therefore, the given equation is not aquadratic equation.


(viii) Given, x3 – 4x2 – x +1 = (x – 2)3

By using the formula for (a+b)=a2+2ab+b2

 x3 – 4x2 – x +1 = x3 – 8 – 6x + 12x

2x2 – 13x + 9 = 0

Since the above equation is in the form of ax2 + bx + c =0.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×