MENU
Question -

Find the principal values of each of the following:

(i) cot-1(-тИЪ3)

(ii) Cot-1(тИЪ3)

(iii) cot-1(-1/тИЪ3)

(iv) cot-1(tan 3╧А/4)



Answer -

(i) Given cot-1(-тИЪ3)

Let y = cot-1(-тИЪ3)

тАУ Cot (╧А/6) = тИЪ3

= Cot (╧А тАУ ╧А/6)

= cot (5╧А/6)

The range of principalvalue of cot-1┬аis (0, ╧А) and cot (5 ╧А/6) = тАУ тИЪ3

Thus, the principalvalue of cot-1┬а(- тИЪ3) is 5╧А/6

(ii) Given Cot-1(тИЪ3)

Let y = cot-1(тИЪ3)

Cot (╧А/6) = тИЪ3

The range of principalvalue of cot-1┬аis (0, ╧А) and

Thus, the principalvalue of cot-1┬а(тИЪ3) is ╧А/6

(iii) Given cot-1(-1/тИЪ3)

Let y = cot-1(-1/тИЪ3)

Cot y = (-1/тИЪ3)

тАУ Cot (╧А/3) = 1/тИЪ3

= Cot (╧А тАУ ╧А/3)

= cot (2╧А/3)

The range of principalvalue of cot-1(0, ╧А) and cot (2╧А/3) = тАУ 1/тИЪ3

Therefore theprincipal value of cot-1(-1/тИЪ3) is 2╧А/3

(iv) Given cot-1(tan3╧А/4)

But we know that tan3╧А/4 = -1

By substituting thisvalue in cot-1(tan 3╧А/4) we get

Cot-1(-1)

Now, let y = cot-1(-1)

Cot y = (-1)

тАУ Cot (╧А/4) = 1

= Cot (╧А тАУ ╧А/4)

= cot (3╧А/4)

The range of principalvalue of cot-1(0, ╧А) and cot (3╧А/4) = тАУ 1

Therefore theprincipal value of cot-1(tan 3╧А/4) is 3╧А/4

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×