MENU
Question -

Find the principal value of each of the following:

(i) sec-1┬а(-тИЪ2)

(ii) sec-1┬а(2)

(iii) sec-1┬а(2 sin (3╧А/4))

(iv) sec-1┬а(2 tan (3╧А/4))



Answer -

(i) Given sec-1┬а(-тИЪ2)

Now let y = sec-1┬а(-тИЪ2)

Sec y = -тИЪ2

We know that sec ╧А/4 =тИЪ2

Therefore, -sec (╧А/4)= -тИЪ2

= sec (╧А тАУ ╧А/4)

= sec (3╧А/4)

Thus the range ofprincipal value of sec-1┬аis [0, ╧А] тАУ {╧А/2}

And sec (3╧А/4) = тАУ тИЪ2

Hence the principalvalue of sec-1┬а(-тИЪ2) is 3╧А/4

(ii) Given sec-1┬а(2)

Let y = sec-1┬а(2)

Sec y = 2

= Sec ╧А/3

Therefore the range ofprincipal value of sec-1┬аis [0, ╧А] тАУ {╧А/2} and sec ╧А/3 = 2

Thus the principalvalue of sec-1┬а(2) is ╧А/3

(iii) Given sec-1┬а(2sin (3╧А/4))

But we know that sin(3╧А/4) = 1/тИЪ2

Therefore 2 sin (3╧А/4)= 2 ├Ч 1/тИЪ2

2 sin (3╧А/4) = тИЪ2

Therefore bysubstituting above values in sec-1┬а(2 sin (3╧А/4)), we get

Sec-1┬а(тИЪ2)

Let Sec-1┬а(тИЪ2)= y

Sec y = тИЪ2

Sec (╧А/4) = тИЪ2

Therefore range ofprincipal value of sec-1┬аis [0, ╧А] тАУ {╧А/2} and sec (╧А/4) = тИЪ2

Thus the principalvalue of sec-1┬а(2 sin (3╧А/4)) is ╧А/4.

(iv) Given sec-1┬а(2tan (3╧А/4))

But we know that tan(3╧А/4) = -1

Therefore, 2 tan(3╧А/4) = 2 ├Ч -1

2 tan (3╧А/4) = -2

By substituting thesevalues in sec-1┬а(2 tan (3╧А/4)), we get

Sec-1┬а(-2)

Now let y = Sec-1┬а(-2)

Sec y = тАУ 2

тАУ sec (╧А/3) = -2

= sec (╧А тАУ ╧А/3)

= sec (2╧А/3)

Therefore the range ofprincipal value of sec-1┬аis [0, ╧А] тАУ {╧А/2} and sec (2╧А/3) = -2

Thus, the principalvalue of sec-1┬а(2 tan (3╧А/4)) is (2╧А/3).

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×