MENU

Chapter 4 Determinants Ex 4.2 Solutions

Question - 11 : -

By using properties ofdeterminants, show that-

Answer - 11 : -

(i) 

(ii) 


Solution

(i) 

Applying R1 → R1 + R+ R3, we have:

Applying C2 → C2 − C1, C3 → C3 − C1, we have:

Expanding along C3, we have:

Hence, the given resultis proved.

(ii) 

Applying C1 → C1 + C+ C3, we have:

Applying R2 → R2 − RandR3 → R3 − R1, we have:

Expanding along R3, we have:

Hence, the given resultis proved.

Question - 12 : -

By using properties ofdeterminants, show that:

Answer - 12 : -


Applying R1 → R1 + R+ R3, we have:

Applying C2 → C2 − CandC3 → C3 − C1, we have:

Expanding along R1, we have:

Hence, the given resultis proved.

Question - 13 : -

By using properties ofdeterminants, show that:

Answer - 13 : -


Applying R1 → R1 + bRand R2 → R2 − aR3, we have:

Expanding along R1, we have:


Question - 14 : -

By using properties ofdeterminants, show that:

Answer - 14 : -


Taking out commonfactors ab, and c from R1, R2, and Rrespectively,we have:

Applying R2 → R2 − RandR3 → R3 − R1, we have:

Applying C1 → aC1, C→ bC2, andC3 → cC3, we have:

Expanding along R3, we have:

Hence, the given resultis proved.

Question - 15 : -

Choose the correctanswer.

Let A bea square matrix of order 3 × 3, then is equal to

Answer - 15 : -

A.          B.              C.           D.   


Solution

A is a square matrix of order 3 × 3.

Hence, the correctanswer is C.

Question - 16 : -

Which of the followingis correct?

Answer - 16 : -

A. Determinant is a square matrix.

B. Determinant is a number associated to amatrix.

C. Determinant is a number associated to asquare matrix.

D. None of these


Solution

We know that to everysquare matrix, of order n. We canassociate a number called the determinant of square matrix A,where element of A.

Thus, the determinant isa number associated to a square matrix.

Hence, the correctanswer is C.

Free - Previous Years Question Papers
Any questions? Ask us!
×