MENU
Question -

Prove that:┬аcos 6x┬а= 32 cos6┬аx┬атАУ 48 cos4┬аx┬а+18 cos2┬аx┬атАУ 1



Answer -

Consider

L.H.S. = cos 6x

It can be written as

= cos 3(2x)

Using the formula cos3A┬а= 4 cos3┬аA┬атАУ 3 cos┬аA

= 4 cos3┬а2x┬атАУ3 cos┬а2x

Again by using formulacos 2x┬а= 2 cos2┬аx┬атАУ 1

= 4 [(2 cos2┬аx┬атАУ1)3┬атАУ 3 (2 cos2┬аx┬атАУ 1)

By furthersimplification

= 4 [(2 cos2┬аx)┬а3┬атАУ(1)3┬атАУ 3 (2 cos2┬аx)┬а2┬а+3 (2 cos2┬аx)] тАУ 6cos2┬аx┬а+ 3

We get

= 4 [8cos6x┬атАУ1 тАУ 12 cos4x┬а+ 6 cos2x] тАУ 6 cos2x┬а+3

By multiplication

= 32 cos6x┬атАУ4 тАУ 48 cos4x┬а+ 24 cos2┬аx┬атАУ 6cos2x┬а+ 3

On further calculation

= 32 cos6x┬атАУ48 cos4x┬а+ 18 cos2x┬атАУ 1

= R.H.S.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×