Question -
Answer -
Let unit digit of the number = x
and tenтАЩs digit = y
Number = x + 10y
and number after reversing the digits = y + 10x
According to the conditions,
x + 10y = 4 (x + y) + 3
=> x + 10y = 4x + 4y + 3
=> x + 10y тАУ 4x тАУ 4y = 3
=> -3x + 6y = 3
=> x тАУ 2y = -1 тАж.(i)
(Dividing by -3)
and x + 10y + 18 = y + 10x
=> x + 10y тАУ y тАУ 10x = -18
=> -9x + 9y = -18
=>x тАУ y = 2 тАж.(ii)
(Dividing by 9)
Subtracting (i) from (ii)
y = 3
x тАУ 3 = 2
=>x = 2 + 3 = 5 {From (ii)}
Number = x + 10y = 5 + 10 x 3 = 5 + 30 = 35