Question -
Answer -
Given equation of lines 2x тАУ y тАУ 4 = 0, x = 3 and x = 5
Table for line 2x тАУ y тАУ 4 = 0,
┬а

Draw the points P (0, -4) and Q (2,0) and join these points and form a line PQ also draw the lines x = 3 and x = 5.
Area of quadrilateral ABCD =┬а
x distance between parallel lines (AB) x (AD + BC) [since, quadrilateral ABCD is a trapezium]=┬а┬а
┬аx 2 x (6 + 2) [тИ╡ AB = OB тАУ OA = 5 тАУ 3 = 2, AD = 2 and BC = 6]= 8 sq. units
┬а

Hence, the required area of the quadrilateral formed by the lines and the x-axis is 8 sq. units.