MENU
Question -

If a function f: R → R be defined by
 
Find: f (1), f (–1), f (0), f (2).



Answer -

Given:
Let us find f (1), f (–1), f (0) and f (2).
When x > 0, f (x) = 4x + 1
Substituting x = 1 in the above equation, we get
f (1) = 4(1) + 1
= 4 + 1
= 5
When x < 0, f(x) = 3x – 2
Substituting x = –1 in the above equation, we get
f (–1) = 3(–1) – 2
= –3 – 2
= –5
When x = 0, f(x) = 1
Substituting x = 0 in the above equation, we get
f (0) = 1
When x > 0, f(x) = 4x + 1
Substituting x = 2 in the above equation, we get
f (2) = 4(2) + 1
= 8 + 1
= 9
∴ f (1) = 5, f (–1) = –5, f (0) = 1 and f (2) = 9.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×