MENU
Question -

Let * be a binary operation on Z defined by a * b = a + b тАУ 4 for all a,b тИИ Z.

(i) Show that * is both commutative and associative.

(ii) Find the identity element in Z

(iii) Find the invertible element in Z.



Answer -

(i) First we have toprove commutativity of *

Let a, b тИИ Z. then,

a * b = a + b тАУ 4

= b + a тАУ 4

= b * a

Therefore,

a * b = b * a, тИА a, b тИИ Z

Thus, * is commutativeon Z.

Now we have to proveassociativity of Z.

Let a, b, c тИИ Z. then,

a * (b * c) = a * (b +c тАУ 4)

= a + b + c -4 тАУ 4

= a + b + c тАУ 8

(a * b) * c = (a + b тАУ4) * c

= a + b тАУ 4 + c тАУ 4

= a + b + c тАУ 8

Therefore,

a * (b * c) = (a * b)* c, for all a, b, c тИИ Z

Thus, * is associativeon Z.

(ii) Let e be the identityelement in Z with respect to * such that

a * e = a = e * a тИА a тИИ Z

a * e = a and e * a =a, тИА a тИИ Z

a + e тАУ 4 = a and e +a тАУ 4 = a, тИА a тИИ Z

e = 4, тИА a тИИ Z

Thus, 4 is theidentity element in Z with respect to *.

(iii) Let a тИИ Z and b тИИ Z be the inverse of a. Then,

a * b = e = b * a

a * b = e and b * a =e

a + b тАУ 4 = 4 and b +a тАУ 4 = 4

b = 8 тАУ a тИИ Z

Thus, 8 тАУ a is theinverse of a тИИ Z

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×