MENU
Question -

Find the equation of the circle which passes through the points (3, 7), (5, 5) and has its centre on line x – 4y = 1.



Answer -

Given:

The points (3, 7), (5,5)

The line x – 4y = 1….(1)

By using the standardform of the equation of the circle:

x2 + y2 +2ax + 2by + c = 0 ….. (2)

Let us substitute thecentre (-a, -b) in equation (1) we get,

(- a) – 4(- b) = 1

-a + 4b = 1

a – 4b + 1 = 0…… (3)

Substitute the points(3, 7) in equation (2), we get

32 + 72 +2a(3) + 2b(7) + c = 0

9 + 49 + 6a + 14b + c= 0

6a + 14b + c + 58 =0….. (4)

Substitute the points(5, 5) in equation (2), we get

52 + 52 +2a(5) + 2b(5) + c = 0

25 + 25 + 10a + 10b +c = 0

10a + 10b + c + 50 =0….. (5)

By simplifyingequations (3), (4) and (5) we get,

a = 3, b = 1, c = – 90

Now, by substitutingthe values of a, b, c in equation (2), we get

x2 + y2 +2(3)x + 2(1)y – 90 = 0

x2 + y2 +6x + 2y – 90 = 0

 The equation ofthe circle is x2 + y2 + 6x + 2y – 90 = 0.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×