MENU
Question -

Find the equation of the circle which circumscribes the triangle formed by the lines:
(i) x + y + 3 = 0, x тАУ y + 1 = 0 and x = 3
(ii) 2x + y тАУ 3 = 0, x + y тАУ 1 = 0 and 3x + 2y тАУ 5 = 0
(iii) x + y = 2, 3x тАУ 4y = 6 and x тАУ y = 0
(iv) y = x + 2, 3y = 4x and 2y = 3x



Answer -

(i) x + y + 3 = 0, x тАУ y + 1 = 0 and x = 3

Given:

The lines x + y + 3 =0

x тАУ y + 1 = 0

x = 3

On solving these lineswe get the intersection points A (-2, -1), B (3, 4), C (3, -6)

So by using thestandard form of the equation of the circle:

x2┬а+ y2┬а+2ax + 2by + c = 0тАж.. (1)

Substitute the points(-2, -1) in equation (1), we get

(- 2)2┬а+(- 1)2┬а+ 2a(-2) + 2b(-1) + c = 0

4 + 1 тАУ 4a тАУ 2b + c =0

5 тАУ 4a тАУ 2b + c = 0

4a + 2b тАУ c тАУ 5 = 0тАж..(2)

Substitute the points(3, 4) in equation (1), we get

32┬а+ 42┬а+2a(3) + 2b(4) + c = 0

9 + 16 + 6a + 8b + c =0

6a + 8b + c + 25 =0тАж.. (3)

Substitute the points(3, -6) in equation (1), we get

32┬а+(- 6)2┬а+ 2a(3) + 2b(- 6) + c = 0

9 + 36 + 6a тАУ 12b + c= 0

6a тАУ 12b + c + 45 =0тАж.. (4)

Upon simplifyingequations (2), (3), (4) we get

a = тАУ 3, b = 1, c =-15.

Now by substitutingthe values of a, b, c in equation (1), we get

x2┬а+ y2┬а+2(- 3)x + 2(1)y тАУ 15 = 0

x2┬а+ y2┬атАУ6x + 2y тАУ 15 = 0

тИ┤┬аThe equation ofthe circle is x2┬а+ y2┬атАУ 6x + 2y тАУ 15 = 0.

(ii) 2x + y тАУ 3 = 0, x + y тАУ 1 = 0 and 3x + 2y тАУ 5 = 0

Given:

The lines 2x + y тАУ 3 =0

x + y тАУ 1 = 0

3x + 2y тАУ 5 = 0

On solving these lineswe get the intersection points A(2, тАУ 1), B(3, тАУ 2), C(1,1)

So by using thestandard form of the equation of the circle:

x2┬а+ y2┬а+2ax + 2by + c = 0тАж.. (1)

Substitute the points(2, -1) in equation (1), we get

22┬а+(- 1)2┬а+ 2a(2) + 2b(- 1) + c = 0

4 + 1 + 4a тАУ 2b + c =0

4a тАУ 2b + c + 5 = 0тАж..(2)

Substitute the points(3, -2) in equation (1), we get

32┬а+(- 2)2┬а+ 2a(3) + 2b(- 2) + c = 0

9 + 4 + 6a тАУ 4b + c =0

6a тАУ 4b + c + 13 =0тАж.. (3)

Substitute the points(1, 1) in equation (1), we get

12┬а+ 12┬а+2a(1) + 2b(1) + c = 0

1 + 1 + 2a + 2b + c =0

2a + 2b + c + 2 = 0тАж..(4)

Upon simplifyingequations (2), (3), (4) we get

a = -13/2, b = -5/2, c= 16

Now by substitutingthe values of a, b, c in equation (1), we get

x2┬а+ y2┬а+2 (-13/2)x + 2 (-5/2)y + 16 = 0

x2┬а+ y2┬атАУ13x тАУ 5y + 16 = 0

тИ┤┬аThe equation ofthe circle is x2┬а+ y2┬атАУ 13x тАУ 5y + 16 = 0

(iii) x + y = 2, 3x тАУ 4y = 6 and x тАУ y = 0

Given:

The lines x + y = 2

3x тАУ 4y = 6

x тАУ y = 0

On solving these lineswe get the intersection points A(2,0), B(- 6, тАУ 6), C(1,1)

So by using thestandard form of the equation of the circle:

x2┬а+ y2┬а+2ax + 2by + c = 0тАж.. (1)

Substitute the points(2, 0) in equation (1), we get

22┬а+ 02┬а+2a(2) + 2b(0) + c = 0

4 + 4a + c = 0

4a + c + 4 = 0тАж.. (2)

Substitute the point(-6, -6) in equation (1), we get

(- 6)2┬а+(- 6)2┬а+ 2a(- 6) + 2b(- 6) + c = 0

36 + 36 тАУ 12a тАУ 12b +c = 0

12a + 12b тАУ c тАУ 72 =0тАж.. (3)

Substitute the points(1, 1) in equation (1), we get

12┬а+ 12┬а+2a(1) + 2b(1) + c = 0

1 + 1 + 2a + 2b + c =0

2a + 2b + c + 2 = 0тАж..(4)

Upon simplifyingequations (2), (3), (4) we get

a = 2, b = 3, c = тАУ12.

Substituting thevalues of a, b, c in equation (1), we get

x2┬а+ y2┬а+2(2)x + 2(3)y тАУ 12 = 0

x2┬а+ y2┬а+4x + 6y тАУ 12 = 0

тИ┤┬аThe equation ofthe circle is x2┬а+ y2┬а+ 4x + 6y тАУ 12 = 0

(iv) y = x + 2, 3y = 4x and 2y = 3x

Given:

The lines y = x + 2

3y = 4x

2y = 3x

On solving these lineswe get the intersection points A(6,8), B(0,0), C(4,6)

So by using thestandard form of the equation of the circle:

x2┬а+ y2┬а+2ax + 2by + c = 0тАж.. (1)

Substitute the points(6, 8) in equation (1), we get

62┬а+ 82┬а+2a(6) + 2b(8) + c = 0

36 + 64 + 12a + 16b +c = 0

12a + 16b + c + 100 =0тАжтАж (2)

Substitute the points(0, 0) in equation (1), we get

02┬а+ 02┬а+2a(0) + 2b(0) + c = 0

0 + 0 + 0a + 0b + c =0

c = 0тАж.. (3)

Substitute the points(4, 6) in equation (1), we get

42┬а+ 62┬а+2a(4) + 2b(6) + c = 0

16 + 36 + 8a + 12b + c= 0

8a + 12b + c + 52 =0тАж.. (4)

Upon simplifyingequations (2), (3), (4) we get

a = тАУ 23, b = 11, c =0

Now by substitutingthe values of a, b, c in equation (1), we get

x2┬а+ y2┬а+2(- 23)x + 2(11)y + 0 = 0

x2┬а+ y2┬атАУ46x + 22y = 0

тИ┤┬аThe equation ofthe circle is x2┬а+ y2┬атАУ 46x + 22y = 0

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×