MENU
Question -

Find the coordinates of the centre radius of each of the followingcircle:
(i) x2 + y2 + 6x – 8y – 24 = 0

(ii) 2x2 + 2y2 – 3x + 5y = 7

(iv) x2 + y2 – ax – by = 0



Answer -

(i) x2 + y2 +6x – 8y – 24 = 0

Given:

The equation of thecircle is x2 + y2 + 6x – 8y – 24 = 0 …… (1)

We know that for acircle x2 + y2 + 2ax + 2by + c = 0 …… (2)

Centre = (-a, -b)

So by comparing equation(1) and (2)

Centre = (-6/2,-(-8)/2)

= (-3, 4)

Radius = √(a2 + b2 –c)

= √(32 + 42 –(-24))

= √(9 + 16 + 24)

= √(49)

= 7

 The centre ofthe circle is (-3, 4) and the radius is 7.

(ii) 2x2 +2y2 – 3x + 5y = 7

Given:

The equation of thecircle is 2x2 + 2y2 – 3x + 5y = 7 (divide by 2we get)

x2 + y2 –3x/2 + 5y/2 = 7/2

Now, by comparing withthe equation x2 + y2 + 2ax + 2by + c = 0

Centre = (-a, -b)

Given:

The equation of thecircle is

(Multiply by 2 we get)

x2 + y2 +2x cos θ + 2y sin θ – 8 = 0

By comparing with theequation x2 + y2 + 2ax + 2by + c = 0

Centre = (-a, -b)

= [(-2cos θ)/2 ,(-2sin θ)/2]

= (-cos θ, -sin θ)

Radius = √(a2 + b2 –c)

= √[(-cos θ)2 +(sin θ)2 – (-8)]

= √[cos2 θ+ sin2 θ + 8]

= √[1 + 8]

= √[9]

= 3

 The centre andradius of the circle is (-cos θ, -sin θ) and 3.

(iv) x2 + y2 –ax – by = 0

Given:

Equation of the circleis x2 + y2 – ax – by = 0

By comparing with theequation x2 + y2 + 2ax + 2by + c = 0

Centre = (-a, -b)

= (-(-a)/2, -(-b)/2)

= (a/2, b/2)

Radius = √(a2 + b2 –c)

= √[(a/2)2 +(b/2)2]

= √[(a2/4 + b2/4)]

= √[(a2 + b2)/4]

= [√(a2 + b2)]/2

 The centre andradius of the circle is (a/2, b/2) and [√(a2 +b2)]/2

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×